创新的生物传感智能口罩:揭开呼吸监测的未来。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiahui Liang, Conghui Liu and Tailin Xu
{"title":"创新的生物传感智能口罩:揭开呼吸监测的未来。","authors":"Jiahui Liang, Conghui Liu and Tailin Xu","doi":"10.1039/D5MH00279F","DOIUrl":null,"url":null,"abstract":"<p >Real-time monitoring of respiratory health is increasingly critical, particularly in addressing global health challenges such as Corona Virus Disease 2019 (COVID-19). Smart masks equipped with biosensing mechanisms revolutionize respiratory health monitoring by enabling real-time detection of respiratory parameters and biomarkers. In recent years, significant advancements have been achieved in the development of smart masks based on different sensor types with high sensitivity and accuracy, flexible functionality, and portability, providing new approaches for remote and real-time monitoring of respiratory parameters and biomarkers. In this review, we aim to provide a comprehensive overview of the current state of development and future potential of biosensing smart masks in various domains. This review outlines a systematic categorization of smart masks according to diverse sensing principles, classifying them into six categories: electrochemical sensors, optical sensors, piezoelectric sensors, and others. This review discusses the basic sensing principles and mechanisms of smart masks and describes the existing research developments of their different biosensors. Additionally, it explores the innovative applications of smart masks in health monitoring, protective functions, and expanding application scenarios. This review also identifies the current challenges faced by smart masks, including issues with sensor accuracy, environmental interference, and the need for better integration of multifunctional features. Proposed solutions to these challenges are discussed, along with the anticipated role of smart masks in early disease detection, personalized medicine, and environmental protection.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 16","pages":" 5975-5993"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative biosensing smart masks: unveiling the future of respiratory monitoring\",\"authors\":\"Jiahui Liang, Conghui Liu and Tailin Xu\",\"doi\":\"10.1039/D5MH00279F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Real-time monitoring of respiratory health is increasingly critical, particularly in addressing global health challenges such as Corona Virus Disease 2019 (COVID-19). Smart masks equipped with biosensing mechanisms revolutionize respiratory health monitoring by enabling real-time detection of respiratory parameters and biomarkers. In recent years, significant advancements have been achieved in the development of smart masks based on different sensor types with high sensitivity and accuracy, flexible functionality, and portability, providing new approaches for remote and real-time monitoring of respiratory parameters and biomarkers. In this review, we aim to provide a comprehensive overview of the current state of development and future potential of biosensing smart masks in various domains. This review outlines a systematic categorization of smart masks according to diverse sensing principles, classifying them into six categories: electrochemical sensors, optical sensors, piezoelectric sensors, and others. This review discusses the basic sensing principles and mechanisms of smart masks and describes the existing research developments of their different biosensors. Additionally, it explores the innovative applications of smart masks in health monitoring, protective functions, and expanding application scenarios. This review also identifies the current challenges faced by smart masks, including issues with sensor accuracy, environmental interference, and the need for better integration of multifunctional features. Proposed solutions to these challenges are discussed, along with the anticipated role of smart masks in early disease detection, personalized medicine, and environmental protection.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 16\",\"pages\":\" 5975-5993\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00279f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00279f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实时监测呼吸系统健康变得越来越重要,特别是在应对2019冠状病毒病(COVID-19)等全球卫生挑战方面。配备生物传感机制的智能口罩通过实时检测呼吸参数和生物标志物,彻底改变了呼吸健康监测。近年来,基于不同传感器类型的智能口罩的开发取得了重大进展,具有高灵敏度和准确性,灵活的功能和便携性,为远程和实时监测呼吸参数和生物标志物提供了新的方法。在这篇综述中,我们旨在全面概述生物传感智能口罩在各个领域的发展现状和未来潜力。本文根据不同的传感原理对智能口罩进行了系统的分类,将其分为电化学传感器、光学传感器、压电传感器和其他六大类。本文综述了智能口罩的基本传感原理和机理,并介绍了智能口罩中各种生物传感器的研究进展。探索智能口罩在健康监测、防护功能、拓展应用场景等方面的创新应用。本综述还确定了智能口罩当前面临的挑战,包括传感器精度、环境干扰以及更好地集成多功能特性的需求。讨论了针对这些挑战提出的解决方案,以及智能口罩在早期疾病检测、个性化医疗和环境保护方面的预期作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Innovative biosensing smart masks: unveiling the future of respiratory monitoring

Innovative biosensing smart masks: unveiling the future of respiratory monitoring

Real-time monitoring of respiratory health is increasingly critical, particularly in addressing global health challenges such as Corona Virus Disease 2019 (COVID-19). Smart masks equipped with biosensing mechanisms revolutionize respiratory health monitoring by enabling real-time detection of respiratory parameters and biomarkers. In recent years, significant advancements have been achieved in the development of smart masks based on different sensor types with high sensitivity and accuracy, flexible functionality, and portability, providing new approaches for remote and real-time monitoring of respiratory parameters and biomarkers. In this review, we aim to provide a comprehensive overview of the current state of development and future potential of biosensing smart masks in various domains. This review outlines a systematic categorization of smart masks according to diverse sensing principles, classifying them into six categories: electrochemical sensors, optical sensors, piezoelectric sensors, and others. This review discusses the basic sensing principles and mechanisms of smart masks and describes the existing research developments of their different biosensors. Additionally, it explores the innovative applications of smart masks in health monitoring, protective functions, and expanding application scenarios. This review also identifies the current challenges faced by smart masks, including issues with sensor accuracy, environmental interference, and the need for better integration of multifunctional features. Proposed solutions to these challenges are discussed, along with the anticipated role of smart masks in early disease detection, personalized medicine, and environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信