Weizheng Li, Ruiqi Wang, Zhenzhen Su, Shang Li, Guoping Zhao, Qinghua Wang, Hongqian Cao, Lei Zhang
{"title":"自富铁细菌膜纳米囊泡用于级联和多模式抗肿瘤治疗。","authors":"Weizheng Li, Ruiqi Wang, Zhenzhen Su, Shang Li, Guoping Zhao, Qinghua Wang, Hongqian Cao, Lei Zhang","doi":"10.1021/acsbiomaterials.5c00217","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of microbiology and nanotechnology offers a novel strategy for cancer treatment. In this study, we innovatively propose the use of <i>Pseudomonas aeruginosa</i> bacterial membranes as nanocarriers. These membranes possess a simple and unique self-enriching property for iron, which, in addition to the inherent immune effects of the membrane itself, can facilitate tumor chemodynamic therapy through Fenton reactions. The system encapsulates the anticancer drug β-Lapachone, which can generate a large amount of hydrogen peroxide within cells, further serving as a substrate for the Fenton reaction, leading to a cascade reaction that achieves a synergistic effect of three therapeutic modalities in tumor treatment. Moreover, the aptamer AS1411 is used to enhance tumor targeting and optimize drug delivery within the tumor microenvironment. This investigation presents a multimodal antitumor strategy that demonstrates enhanced antitumor effects both in vitro and in vivo, providing a new paradigm for the antitumor application of bacterial membrane nanocarriers.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"3697-3708"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Iron-Enriched Bacterial Membrane Nanovesicles for Cascade and Multi-Modal Antitumor Therapy.\",\"authors\":\"Weizheng Li, Ruiqi Wang, Zhenzhen Su, Shang Li, Guoping Zhao, Qinghua Wang, Hongqian Cao, Lei Zhang\",\"doi\":\"10.1021/acsbiomaterials.5c00217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of microbiology and nanotechnology offers a novel strategy for cancer treatment. In this study, we innovatively propose the use of <i>Pseudomonas aeruginosa</i> bacterial membranes as nanocarriers. These membranes possess a simple and unique self-enriching property for iron, which, in addition to the inherent immune effects of the membrane itself, can facilitate tumor chemodynamic therapy through Fenton reactions. The system encapsulates the anticancer drug β-Lapachone, which can generate a large amount of hydrogen peroxide within cells, further serving as a substrate for the Fenton reaction, leading to a cascade reaction that achieves a synergistic effect of three therapeutic modalities in tumor treatment. Moreover, the aptamer AS1411 is used to enhance tumor targeting and optimize drug delivery within the tumor microenvironment. This investigation presents a multimodal antitumor strategy that demonstrates enhanced antitumor effects both in vitro and in vivo, providing a new paradigm for the antitumor application of bacterial membrane nanocarriers.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"3697-3708\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00217\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Self-Iron-Enriched Bacterial Membrane Nanovesicles for Cascade and Multi-Modal Antitumor Therapy.
The integration of microbiology and nanotechnology offers a novel strategy for cancer treatment. In this study, we innovatively propose the use of Pseudomonas aeruginosa bacterial membranes as nanocarriers. These membranes possess a simple and unique self-enriching property for iron, which, in addition to the inherent immune effects of the membrane itself, can facilitate tumor chemodynamic therapy through Fenton reactions. The system encapsulates the anticancer drug β-Lapachone, which can generate a large amount of hydrogen peroxide within cells, further serving as a substrate for the Fenton reaction, leading to a cascade reaction that achieves a synergistic effect of three therapeutic modalities in tumor treatment. Moreover, the aptamer AS1411 is used to enhance tumor targeting and optimize drug delivery within the tumor microenvironment. This investigation presents a multimodal antitumor strategy that demonstrates enhanced antitumor effects both in vitro and in vivo, providing a new paradigm for the antitumor application of bacterial membrane nanocarriers.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture