基于对抗性迁移学习的混合循环网络空气质量预测

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanqi Hao, Chuan Luo, Tianrui Li, Junbo Zhang, Hongmei Chen
{"title":"基于对抗性迁移学习的混合循环网络空气质量预测","authors":"Yanqi Hao,&nbsp;Chuan Luo,&nbsp;Tianrui Li,&nbsp;Junbo Zhang,&nbsp;Hongmei Chen","doi":"10.1155/int/6014262","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Air quality modeling and forecasting has become a key problem in environmental protection. The existing prediction models typically require large-scale and high-quality historical data to achieve better performance. However, insufficient data volume and significant differences between data distribution across different regions will definitely reduce the effectiveness of the model reuse. To address the above issues, we propose a novel hybrid recurrent network based on domain adversarial transfer to achieve a stronger generalization ability when training air quality data from multisource domains. The proposed model mainly consists of three fundamental modules, i.e., feature extractor, regression predictor, and domain classifier. One-dimensional convolutional neural networks (1D-CNNs) are used to extract temporal feature of data from source and target stations. Bi-directional gated recurrent unit (bi-GRU) and bi-directional long short-term memory (bi-LSTM) are utilized to learn temporal dependencies pattern of multivariate time series data. Two adversarial transfer strategies are employed to ensure that our model is capable of finding domain invariant representations automatically. Experiments with different number of source domains are conducted to demonstrate the effectiveness of the proposed domain transfer strategies. The experimental results also show that our composite model has superior performance for forecasting air quality in various regions. As further evidence, the adversarial training method could promote the positive transfer and alleviate the negative effect of irrelevant source data. Besides, our model exhibits preferable generalization capability as more robust prediction results are achieved on both unseen target domains and original source domains.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6014262","citationCount":"0","resultStr":"{\"title\":\"Adversarial Transfer Learning-Based Hybrid Recurrent Network for Air Quality Prediction\",\"authors\":\"Yanqi Hao,&nbsp;Chuan Luo,&nbsp;Tianrui Li,&nbsp;Junbo Zhang,&nbsp;Hongmei Chen\",\"doi\":\"10.1155/int/6014262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Air quality modeling and forecasting has become a key problem in environmental protection. The existing prediction models typically require large-scale and high-quality historical data to achieve better performance. However, insufficient data volume and significant differences between data distribution across different regions will definitely reduce the effectiveness of the model reuse. To address the above issues, we propose a novel hybrid recurrent network based on domain adversarial transfer to achieve a stronger generalization ability when training air quality data from multisource domains. The proposed model mainly consists of three fundamental modules, i.e., feature extractor, regression predictor, and domain classifier. One-dimensional convolutional neural networks (1D-CNNs) are used to extract temporal feature of data from source and target stations. Bi-directional gated recurrent unit (bi-GRU) and bi-directional long short-term memory (bi-LSTM) are utilized to learn temporal dependencies pattern of multivariate time series data. Two adversarial transfer strategies are employed to ensure that our model is capable of finding domain invariant representations automatically. Experiments with different number of source domains are conducted to demonstrate the effectiveness of the proposed domain transfer strategies. The experimental results also show that our composite model has superior performance for forecasting air quality in various regions. As further evidence, the adversarial training method could promote the positive transfer and alleviate the negative effect of irrelevant source data. Besides, our model exhibits preferable generalization capability as more robust prediction results are achieved on both unseen target domains and original source domains.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6014262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/6014262\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6014262","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

空气质量的建模与预报已成为环境保护中的关键问题。现有的预测模型通常需要大规模和高质量的历史数据来实现更好的性能。然而,数据量不足和不同地区数据分布的显著差异必然会降低模型重用的有效性。为了解决上述问题,我们提出了一种基于领域对抗转移的新型混合循环网络,以在训练来自多源领域的空气质量数据时获得更强的泛化能力。该模型主要由特征提取器、回归预测器和领域分类器三个基本模块组成。一维卷积神经网络(1d - cnn)用于提取源站和目标站数据的时间特征。利用双向门控循环单元(bi-GRU)和双向长短期记忆(bi-LSTM)学习多元时间序列数据的时间依赖模式。采用了两种对抗迁移策略来保证模型能够自动找到域不变表示。用不同数量的源域进行了实验,验证了所提出的域转移策略的有效性。实验结果表明,该模型对不同地区的空气质量预报具有较好的效果。进一步证明,对抗性训练方法可以促进正向迁移,减轻不相关源数据的负面影响。此外,该模型在未知目标域和原始源域上均具有较好的鲁棒性预测结果,具有较好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adversarial Transfer Learning-Based Hybrid Recurrent Network for Air Quality Prediction

Adversarial Transfer Learning-Based Hybrid Recurrent Network for Air Quality Prediction

Air quality modeling and forecasting has become a key problem in environmental protection. The existing prediction models typically require large-scale and high-quality historical data to achieve better performance. However, insufficient data volume and significant differences between data distribution across different regions will definitely reduce the effectiveness of the model reuse. To address the above issues, we propose a novel hybrid recurrent network based on domain adversarial transfer to achieve a stronger generalization ability when training air quality data from multisource domains. The proposed model mainly consists of three fundamental modules, i.e., feature extractor, regression predictor, and domain classifier. One-dimensional convolutional neural networks (1D-CNNs) are used to extract temporal feature of data from source and target stations. Bi-directional gated recurrent unit (bi-GRU) and bi-directional long short-term memory (bi-LSTM) are utilized to learn temporal dependencies pattern of multivariate time series data. Two adversarial transfer strategies are employed to ensure that our model is capable of finding domain invariant representations automatically. Experiments with different number of source domains are conducted to demonstrate the effectiveness of the proposed domain transfer strategies. The experimental results also show that our composite model has superior performance for forecasting air quality in various regions. As further evidence, the adversarial training method could promote the positive transfer and alleviate the negative effect of irrelevant source data. Besides, our model exhibits preferable generalization capability as more robust prediction results are achieved on both unseen target domains and original source domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信