交换环空间的实现

IF 1 2区 数学 Q1 MATHEMATICS
Laura Cossu, Bruce Olberding
{"title":"交换环空间的实现","authors":"Laura Cossu,&nbsp;Bruce Olberding","doi":"10.1112/jlms.70175","DOIUrl":null,"url":null,"abstract":"<p>Motivated by recent work on the use of topological methods to study collections of rings between an integral domain and its quotient field, we examine spaces of subrings of a commutative ring, endowed with the Zariski or patch topologies. We introduce three notions to study such a space <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>: patch bundles, patch presheaves and patch algebras. When <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is compact and Hausdorff, patch bundles give a way to approximate <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with topologically more tractable spaces, namely Stone spaces. Patch presheaves encode the space <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> into stalks of a presheaf of rings over a Boolean algebra, thus giving a more geometrical setting for studying <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. To both objects, a patch bundle and a patch presheaf, we associate what we call a patch algebra, a commutative ring that efficiently realizes the rings in <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> as factor rings, or even localizations, and whose structure reflects various properties of the rings in <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70175","citationCount":"0","resultStr":"{\"title\":\"Realization of spaces of commutative rings\",\"authors\":\"Laura Cossu,&nbsp;Bruce Olberding\",\"doi\":\"10.1112/jlms.70175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by recent work on the use of topological methods to study collections of rings between an integral domain and its quotient field, we examine spaces of subrings of a commutative ring, endowed with the Zariski or patch topologies. We introduce three notions to study such a space <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>: patch bundles, patch presheaves and patch algebras. When <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is compact and Hausdorff, patch bundles give a way to approximate <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with topologically more tractable spaces, namely Stone spaces. Patch presheaves encode the space <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> into stalks of a presheaf of rings over a Boolean algebra, thus giving a more geometrical setting for studying <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. To both objects, a patch bundle and a patch presheaf, we associate what we call a patch algebra, a commutative ring that efficiently realizes the rings in <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> as factor rings, or even localizations, and whose structure reflects various properties of the rings in <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70175\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于最近使用拓扑方法研究积分域与其商域之间环集合的工作,我们研究了具有Zariski或patch拓扑的交换环的子空间。我们引入三个概念来研究这样的空间X$ X$:补丁束、补丁预束和补丁代数。当X$ X$是紧的且Hausdorff时,补丁包提供了一种用拓扑上更易于处理的空间(即Stone空间)逼近X$ X$的方法。Patch预束将空间X$ X$编码为布尔代数上预束环的茎,从而为研究X$ X$提供了更几何的设置。对于patch bundle和patch presheaf这两个对象,我们将其关联为patch代数,即一个交换环,它有效地将X$ X$中的环实现为因子环,甚至局部化,其结构反映了X$ X$中环的各种性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of spaces of commutative rings

Motivated by recent work on the use of topological methods to study collections of rings between an integral domain and its quotient field, we examine spaces of subrings of a commutative ring, endowed with the Zariski or patch topologies. We introduce three notions to study such a space X $X$ : patch bundles, patch presheaves and patch algebras. When X $X$ is compact and Hausdorff, patch bundles give a way to approximate X $X$ with topologically more tractable spaces, namely Stone spaces. Patch presheaves encode the space X $X$ into stalks of a presheaf of rings over a Boolean algebra, thus giving a more geometrical setting for studying X $X$ . To both objects, a patch bundle and a patch presheaf, we associate what we call a patch algebra, a commutative ring that efficiently realizes the rings in X $X$ as factor rings, or even localizations, and whose structure reflects various properties of the rings in X $X$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信