可变和扩展精度(VRP)加速器在22纳米SoC中实现

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Eric Guthmuller, César Fuguet, Andrea Bocco, Jérôme Fereyre, Adrian Evans, Yves Durand
{"title":"可变和扩展精度(VRP)加速器在22纳米SoC中实现","authors":"Eric Guthmuller,&nbsp;César Fuguet,&nbsp;Andrea Bocco,&nbsp;Jérôme Fereyre,&nbsp;Adrian Evans,&nbsp;Yves Durand","doi":"10.1049/ell2.70255","DOIUrl":null,"url":null,"abstract":"<p>Linear solvers and eigensolvers are the heart of high-performance computing scientific applications. Among them, iterative projection methods are preferred to direct algorithms for large problems because of their lower memory usage, but they are prone to roundoff errors. Using an enhanced working precision inside the linear computing kernels mitigates this issue and accelerates convergence. Today, to go beyond 80 bits of precision, the only option is to use software libraries which are very slow. We introduce the variable and extended precision accelerator (VRP), a RISC-V accelerator implemented on a system-on-chip (SoC) using GF22FDX technology. The VRP supports floating point computations with a range of significand bits from 2 to 512. This accelerator delivers an average 19.25<span></span><math>\n <semantics>\n <mo>×</mo>\n <annotation>$\\times$</annotation>\n </semantics></math> application speedup compared to the well-known MPFR software library running on a 2400 MHz Intel Xeon processor. Additionally, extended precision facilitates the convergence of linear solvers for problems that would otherwise fail to converge and reduces energy-to-solution.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70255","citationCount":"0","resultStr":"{\"title\":\"Variable and Extended Precision (VRP) Accelerator Implemented in a 22 nm SoC\",\"authors\":\"Eric Guthmuller,&nbsp;César Fuguet,&nbsp;Andrea Bocco,&nbsp;Jérôme Fereyre,&nbsp;Adrian Evans,&nbsp;Yves Durand\",\"doi\":\"10.1049/ell2.70255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear solvers and eigensolvers are the heart of high-performance computing scientific applications. Among them, iterative projection methods are preferred to direct algorithms for large problems because of their lower memory usage, but they are prone to roundoff errors. Using an enhanced working precision inside the linear computing kernels mitigates this issue and accelerates convergence. Today, to go beyond 80 bits of precision, the only option is to use software libraries which are very slow. We introduce the variable and extended precision accelerator (VRP), a RISC-V accelerator implemented on a system-on-chip (SoC) using GF22FDX technology. The VRP supports floating point computations with a range of significand bits from 2 to 512. This accelerator delivers an average 19.25<span></span><math>\\n <semantics>\\n <mo>×</mo>\\n <annotation>$\\\\times$</annotation>\\n </semantics></math> application speedup compared to the well-known MPFR software library running on a 2400 MHz Intel Xeon processor. Additionally, extended precision facilitates the convergence of linear solvers for problems that would otherwise fail to converge and reduces energy-to-solution.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70255\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70255\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70255","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

线性求解器和特征求解器是高性能计算科学应用的核心。其中,迭代投影法由于其较低的内存占用,在处理大型问题时优于直接算法,但容易产生舍入误差。在线性计算内核中使用增强的工作精度可以缓解这个问题并加速收敛。如今,要达到超过80位的精度,唯一的选择就是使用速度非常慢的软件库。我们介绍了可变和扩展精度加速器(VRP),一种采用GF22FDX技术在片上系统(SoC)上实现的RISC-V加速器。VRP支持浮点数计算,有效位范围为2 ~ 512。与运行在2400 MHz英特尔至强处理器上的知名MPFR软件库相比,该加速器提供了平均19.25 × $\times$的应用程序加速。此外,扩展的精度有助于线性求解器的收敛,否则将无法收敛的问题,并减少能量到解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Variable and Extended Precision (VRP) Accelerator Implemented in a 22 nm SoC

Variable and Extended Precision (VRP) Accelerator Implemented in a 22 nm SoC

Linear solvers and eigensolvers are the heart of high-performance computing scientific applications. Among them, iterative projection methods are preferred to direct algorithms for large problems because of their lower memory usage, but they are prone to roundoff errors. Using an enhanced working precision inside the linear computing kernels mitigates this issue and accelerates convergence. Today, to go beyond 80 bits of precision, the only option is to use software libraries which are very slow. We introduce the variable and extended precision accelerator (VRP), a RISC-V accelerator implemented on a system-on-chip (SoC) using GF22FDX technology. The VRP supports floating point computations with a range of significand bits from 2 to 512. This accelerator delivers an average 19.25 × $\times$ application speedup compared to the well-known MPFR software library running on a 2400 MHz Intel Xeon processor. Additionally, extended precision facilitates the convergence of linear solvers for problems that would otherwise fail to converge and reduces energy-to-solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信