基于叠加综合学习和案例推理的作战效能评估

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yang Bai, Dong Kan, Xiaoying Wu, Zhenglie Yang
{"title":"基于叠加综合学习和案例推理的作战效能评估","authors":"Yang Bai,&nbsp;Dong Kan,&nbsp;Xiaoying Wu,&nbsp;Zhenglie Yang","doi":"10.1002/eng2.70153","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of intelligent warfare, the accurate evaluation of combat system effectiveness is crucial for informed combat decision-making. Given the subjectivity and inefficiency associated with traditional artificial combat effectiveness evaluation methods, this paper proposes an evaluation approach based on Stacking ensemble learning and case reasoning. First, an efficiency evaluation index system is developed, utilizing historical evaluation data and the entropy weight-TOPSIS method to gather expert assessments of combat effectiveness, thereby forming an evaluation case. Next, an integrated feature selection model is established to analyze the importance of various indicators, using Stacking ensemble learning to evaluate operational effectiveness. Finally, the effectiveness of this approach is validated through a case study of operational effectiveness assessment.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70153","citationCount":"0","resultStr":"{\"title\":\"Assessment of Operational Effectiveness Based on Stacking Integrated Learning and Case Reasoning\",\"authors\":\"Yang Bai,&nbsp;Dong Kan,&nbsp;Xiaoying Wu,&nbsp;Zhenglie Yang\",\"doi\":\"10.1002/eng2.70153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the advancement of intelligent warfare, the accurate evaluation of combat system effectiveness is crucial for informed combat decision-making. Given the subjectivity and inefficiency associated with traditional artificial combat effectiveness evaluation methods, this paper proposes an evaluation approach based on Stacking ensemble learning and case reasoning. First, an efficiency evaluation index system is developed, utilizing historical evaluation data and the entropy weight-TOPSIS method to gather expert assessments of combat effectiveness, thereby forming an evaluation case. Next, an integrated feature selection model is established to analyze the importance of various indicators, using Stacking ensemble learning to evaluate operational effectiveness. Finally, the effectiveness of this approach is validated through a case study of operational effectiveness assessment.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70153\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着智能战争的发展,作战系统效能的准确评估对作战决策至关重要。针对传统人工作战效能评估方法存在的主观性和低效率问题,提出了一种基于叠加集成学习和案例推理的人工作战效能评估方法。首先,建立效率评价指标体系,利用历史评价数据和熵权- topsis法收集专家对作战效能的评价,形成评价案例;其次,建立综合特征选择模型,分析各指标的重要性,利用叠加集成学习对作战效能进行评价。最后,通过作战效能评估的案例研究,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Operational Effectiveness Based on Stacking Integrated Learning and Case Reasoning

With the advancement of intelligent warfare, the accurate evaluation of combat system effectiveness is crucial for informed combat decision-making. Given the subjectivity and inefficiency associated with traditional artificial combat effectiveness evaluation methods, this paper proposes an evaluation approach based on Stacking ensemble learning and case reasoning. First, an efficiency evaluation index system is developed, utilizing historical evaluation data and the entropy weight-TOPSIS method to gather expert assessments of combat effectiveness, thereby forming an evaluation case. Next, an integrated feature selection model is established to analyze the importance of various indicators, using Stacking ensemble learning to evaluate operational effectiveness. Finally, the effectiveness of this approach is validated through a case study of operational effectiveness assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信