{"title":"基于rna的生物农药:中国可持续水产养殖的开创性精准解决方案","authors":"Yiran Huang, Yingmin Dai, Zhuotong Huang, Mengqi Zhang, Lijun Xiu, Xianhui Zhang, Youyu Zhang, Lixing Huang","doi":"10.1002/aro2.70000","DOIUrl":null,"url":null,"abstract":"<p>RNA-based biopesticides, heralding the third revolution in agricultural pest and disease control, emerge as pivotal for sustainable aquaculture in China. This review delves into the background, evolution, and applications of RNA biopesticides, emphasizing their transformative impact on aquaculture disease management. RNA-based biopesticides offer myriad advantages. Utilizing dsRNA formulations ensures species-specific targeting, thereby minimizing effects on nontarget organisms. Swift environmental degradation of dsRNA addresses concerns about residual effects and pollution. Crucially, the host’s genetic structure remains unchanged, averting heritable variations. Additionally, resistance challenges are easily mitigated through targeted gene replacement. Nevertheless, challenges impede the technology’s full potential. Factors such as target gene selection, varying effectiveness across pests, and susceptibility of dsRNA to pathogen degradation can influence overall efficacy. The widespread use of RNA pesticides prompts scrutiny of their impact on nontarget organisms’ immune systems, necessitating meticulous consideration of exogenous dsRNA biosafety. Furthermore, assessing the toxicity of viruses and microorganisms as dsRNA carriers is crucial. High production costs and lower efficiency in large-scale production compared to conventional pesticides demand urgent attention. Future research should prioritize the optimization of dsRNA delivery systems to improve stability and targeting precision. Investigating the integration of RNA-based pesticides with other sustainable agricultural practices may further mitigate environmental impacts. Moreover, advancements in cost-effective production techniques and regulatory frameworks will be critical for enabling the widespread adoption of RNA biopesticides, thereby securing their role in the future management of global aquaculture diseases.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"3 2","pages":"165-176"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.70000","citationCount":"0","resultStr":"{\"title\":\"RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China\",\"authors\":\"Yiran Huang, Yingmin Dai, Zhuotong Huang, Mengqi Zhang, Lijun Xiu, Xianhui Zhang, Youyu Zhang, Lixing Huang\",\"doi\":\"10.1002/aro2.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RNA-based biopesticides, heralding the third revolution in agricultural pest and disease control, emerge as pivotal for sustainable aquaculture in China. This review delves into the background, evolution, and applications of RNA biopesticides, emphasizing their transformative impact on aquaculture disease management. RNA-based biopesticides offer myriad advantages. Utilizing dsRNA formulations ensures species-specific targeting, thereby minimizing effects on nontarget organisms. Swift environmental degradation of dsRNA addresses concerns about residual effects and pollution. Crucially, the host’s genetic structure remains unchanged, averting heritable variations. Additionally, resistance challenges are easily mitigated through targeted gene replacement. Nevertheless, challenges impede the technology’s full potential. Factors such as target gene selection, varying effectiveness across pests, and susceptibility of dsRNA to pathogen degradation can influence overall efficacy. The widespread use of RNA pesticides prompts scrutiny of their impact on nontarget organisms’ immune systems, necessitating meticulous consideration of exogenous dsRNA biosafety. Furthermore, assessing the toxicity of viruses and microorganisms as dsRNA carriers is crucial. High production costs and lower efficiency in large-scale production compared to conventional pesticides demand urgent attention. Future research should prioritize the optimization of dsRNA delivery systems to improve stability and targeting precision. Investigating the integration of RNA-based pesticides with other sustainable agricultural practices may further mitigate environmental impacts. Moreover, advancements in cost-effective production techniques and regulatory frameworks will be critical for enabling the widespread adoption of RNA biopesticides, thereby securing their role in the future management of global aquaculture diseases.</p>\",\"PeriodicalId\":100086,\"journal\":{\"name\":\"Animal Research and One Health\",\"volume\":\"3 2\",\"pages\":\"165-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Research and One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aro2.70000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Research and One Health","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aro2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RNA-Based Biopesticides: Pioneering Precision Solutions for Sustainable Aquaculture in China
RNA-based biopesticides, heralding the third revolution in agricultural pest and disease control, emerge as pivotal for sustainable aquaculture in China. This review delves into the background, evolution, and applications of RNA biopesticides, emphasizing their transformative impact on aquaculture disease management. RNA-based biopesticides offer myriad advantages. Utilizing dsRNA formulations ensures species-specific targeting, thereby minimizing effects on nontarget organisms. Swift environmental degradation of dsRNA addresses concerns about residual effects and pollution. Crucially, the host’s genetic structure remains unchanged, averting heritable variations. Additionally, resistance challenges are easily mitigated through targeted gene replacement. Nevertheless, challenges impede the technology’s full potential. Factors such as target gene selection, varying effectiveness across pests, and susceptibility of dsRNA to pathogen degradation can influence overall efficacy. The widespread use of RNA pesticides prompts scrutiny of their impact on nontarget organisms’ immune systems, necessitating meticulous consideration of exogenous dsRNA biosafety. Furthermore, assessing the toxicity of viruses and microorganisms as dsRNA carriers is crucial. High production costs and lower efficiency in large-scale production compared to conventional pesticides demand urgent attention. Future research should prioritize the optimization of dsRNA delivery systems to improve stability and targeting precision. Investigating the integration of RNA-based pesticides with other sustainable agricultural practices may further mitigate environmental impacts. Moreover, advancements in cost-effective production techniques and regulatory frameworks will be critical for enabling the widespread adoption of RNA biopesticides, thereby securing their role in the future management of global aquaculture diseases.