多晶α-突触核蛋白原纤维与原子结构的桥接力学性能的单分子分析和分子动力学模拟

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lulu Bi, Linge Li, Xiang Li, Shaojuan Wu, Xia Zhang, Yilin Zhao, Dan Li, Cong Liu, Zhonghuai Hou, Bo Sun
{"title":"多晶α-突触核蛋白原纤维与原子结构的桥接力学性能的单分子分析和分子动力学模拟","authors":"Lulu Bi,&nbsp;Linge Li,&nbsp;Xiang Li,&nbsp;Shaojuan Wu,&nbsp;Xia Zhang,&nbsp;Yilin Zhao,&nbsp;Dan Li,&nbsp;Cong Liu,&nbsp;Zhonghuai Hou,&nbsp;Bo Sun","doi":"10.1002/agt2.70023","DOIUrl":null,"url":null,"abstract":"<p>α-Synuclein (α-syn) forms structurally distinct fibril polymorphs with various pathological activities in different subtypes of synucleinopathies, such as Parkinson's disease (PD). As a unique proteinaceous polymer, the mechanical property of α-syn fibril is a primary determinant of its neurotoxicity, immunogenicity, and seeding and transmission capacity. Nevertheless, how genetic mutations in α-syn fibrils cause varied polymer behaviors remains largely unknown. Using optical tweezers, we quantitatively characterize the mechanical properties of three α-syn fibril variants at the single-molecule level. We find that wild-type α-syn fibrils are generally more sustainable to an axial disruption force than those formed by the disease-causing E46K and A53T α-syn mutants, whereas their heterogeneous elastic properties manifest similarity. Based on the molecular dynamics simulations, the β-sheet motif and the interface between the two protofilaments dominate in stabilizing the fibril structure. Additionally, single-molecule and simulation analysis consistently reveal the force-driven α-syn protein unfolding without a fibril break. Due to the flexible periphery, these subtle structural changes become more pronounced with the E46K fibril. The structure–mechanics relationship of α-syn fibrils built in this work sheds new light on the fibril assembly and disassembly mechanism and the mutant-associated pathogenesis in PD.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 5","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70023","citationCount":"0","resultStr":"{\"title\":\"Bridging Mechanical Properties with Atomic Structures of Polymorphic α-Synuclein Fibrils by Single-Molecule Analysis and Molecular Dynamics Simulations\",\"authors\":\"Lulu Bi,&nbsp;Linge Li,&nbsp;Xiang Li,&nbsp;Shaojuan Wu,&nbsp;Xia Zhang,&nbsp;Yilin Zhao,&nbsp;Dan Li,&nbsp;Cong Liu,&nbsp;Zhonghuai Hou,&nbsp;Bo Sun\",\"doi\":\"10.1002/agt2.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>α-Synuclein (α-syn) forms structurally distinct fibril polymorphs with various pathological activities in different subtypes of synucleinopathies, such as Parkinson's disease (PD). As a unique proteinaceous polymer, the mechanical property of α-syn fibril is a primary determinant of its neurotoxicity, immunogenicity, and seeding and transmission capacity. Nevertheless, how genetic mutations in α-syn fibrils cause varied polymer behaviors remains largely unknown. Using optical tweezers, we quantitatively characterize the mechanical properties of three α-syn fibril variants at the single-molecule level. We find that wild-type α-syn fibrils are generally more sustainable to an axial disruption force than those formed by the disease-causing E46K and A53T α-syn mutants, whereas their heterogeneous elastic properties manifest similarity. Based on the molecular dynamics simulations, the β-sheet motif and the interface between the two protofilaments dominate in stabilizing the fibril structure. Additionally, single-molecule and simulation analysis consistently reveal the force-driven α-syn protein unfolding without a fibril break. Due to the flexible periphery, these subtle structural changes become more pronounced with the E46K fibril. The structure–mechanics relationship of α-syn fibrils built in this work sheds new light on the fibril assembly and disassembly mechanism and the mutant-associated pathogenesis in PD.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 5\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

α-突触核蛋白(α-syn)在突触核蛋白病(如帕金森病(PD))的不同亚型中形成结构不同的纤维多态性,具有不同的病理活性。α-syn原纤维作为一种独特的蛋白质聚合物,其力学性能是决定其神经毒性、免疫原性、播散和传播能力的主要因素。然而,α-syn原纤维的基因突变如何引起不同的聚合物行为仍是未知的。利用光镊,我们在单分子水平上定量表征了三种α-syn纤维变体的力学性能。我们发现野生型α-syn原纤维通常比致病的E46K和A53T α-syn突变体形成的原纤维更能承受轴向断裂力,而它们的异质弹性特性表现出相似性。基于分子动力学模拟,β-片基序和两个原丝之间的界面在稳定原丝结构中起主导作用。此外,单分子和模拟分析一致地揭示了力驱动的α-syn蛋白展开没有纤维断裂。由于具有弹性的外周,这些微妙的结构变化在E46K原纤维中变得更加明显。本研究建立的α-syn原纤维的结构-力学关系为PD中原纤维的组装和拆卸机制以及突变相关的发病机制提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging Mechanical Properties with Atomic Structures of Polymorphic α-Synuclein Fibrils by Single-Molecule Analysis and Molecular Dynamics Simulations

Bridging Mechanical Properties with Atomic Structures of Polymorphic α-Synuclein Fibrils by Single-Molecule Analysis and Molecular Dynamics Simulations

α-Synuclein (α-syn) forms structurally distinct fibril polymorphs with various pathological activities in different subtypes of synucleinopathies, such as Parkinson's disease (PD). As a unique proteinaceous polymer, the mechanical property of α-syn fibril is a primary determinant of its neurotoxicity, immunogenicity, and seeding and transmission capacity. Nevertheless, how genetic mutations in α-syn fibrils cause varied polymer behaviors remains largely unknown. Using optical tweezers, we quantitatively characterize the mechanical properties of three α-syn fibril variants at the single-molecule level. We find that wild-type α-syn fibrils are generally more sustainable to an axial disruption force than those formed by the disease-causing E46K and A53T α-syn mutants, whereas their heterogeneous elastic properties manifest similarity. Based on the molecular dynamics simulations, the β-sheet motif and the interface between the two protofilaments dominate in stabilizing the fibril structure. Additionally, single-molecule and simulation analysis consistently reveal the force-driven α-syn protein unfolding without a fibril break. Due to the flexible periphery, these subtle structural changes become more pronounced with the E46K fibril. The structure–mechanics relationship of α-syn fibrils built in this work sheds new light on the fibril assembly and disassembly mechanism and the mutant-associated pathogenesis in PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信