用一种简单的制备方法制备了高光伏性能的p-CuO/n-Si异质结

IF 3.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Ahmed Kotbi, Michael Lejeune, Pierre Barroy, Ilham Hamdi Alaoui, Andreas Zeinert, Mustapha Jouiad
{"title":"用一种简单的制备方法制备了高光伏性能的p-CuO/n-Si异质结","authors":"Ahmed Kotbi,&nbsp;Michael Lejeune,&nbsp;Pierre Barroy,&nbsp;Ilham Hamdi Alaoui,&nbsp;Andreas Zeinert,&nbsp;Mustapha Jouiad","doi":"10.1007/s10971-025-06699-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the photovoltaic performance of a p-CuO/n-Si solar cell using the solar cell capacitance simulator-one dimension (SCAPS-1D) software. The input parameters for the simulation, including the band gap energy and absorption coefficient, were experimentally determined for the CuO absorber layer synthesized via the dip-coating method. The presence of the polycrystalline CuO phase was confirmed through comprehensive structural and analytical characterization. The CuO layer exhibited an optical band gap energy of 1.5 eV and a high optical absorption coefficient of ~8 × 10<sup>4 </sup>cm<sup>−1</sup>, demonstrating its suitability for high-efficiency solar cell applications. Simulations of the p-CuO/n-Si heterojunction solar cell revealed an open-circuit voltage of 789 mV, a short-circuit current density of 27.9 mA/cm², a fill factor of 58%, and an overall power conversion efficiency of 12.98%, outperforming previously reported values in the literature. Furthermore, the effect of the CuO layer’s thickness and band gap energy on solar cell’s key performance metrics was systematically analyzed. The results indicate that optimizing the CuO layer thickness within the range of 0.2–0.5 µm and tailoring the band gap energy within 1.3–1.7 eV range can significantly enhance the solar cell’s photovoltaic performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"114 3","pages":"718 - 730"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High photovoltaic performances of a p-CuO/n-Si heterojunction prepared by a simple fabrication method\",\"authors\":\"Ahmed Kotbi,&nbsp;Michael Lejeune,&nbsp;Pierre Barroy,&nbsp;Ilham Hamdi Alaoui,&nbsp;Andreas Zeinert,&nbsp;Mustapha Jouiad\",\"doi\":\"10.1007/s10971-025-06699-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the photovoltaic performance of a p-CuO/n-Si solar cell using the solar cell capacitance simulator-one dimension (SCAPS-1D) software. The input parameters for the simulation, including the band gap energy and absorption coefficient, were experimentally determined for the CuO absorber layer synthesized via the dip-coating method. The presence of the polycrystalline CuO phase was confirmed through comprehensive structural and analytical characterization. The CuO layer exhibited an optical band gap energy of 1.5 eV and a high optical absorption coefficient of ~8 × 10<sup>4 </sup>cm<sup>−1</sup>, demonstrating its suitability for high-efficiency solar cell applications. Simulations of the p-CuO/n-Si heterojunction solar cell revealed an open-circuit voltage of 789 mV, a short-circuit current density of 27.9 mA/cm², a fill factor of 58%, and an overall power conversion efficiency of 12.98%, outperforming previously reported values in the literature. Furthermore, the effect of the CuO layer’s thickness and band gap energy on solar cell’s key performance metrics was systematically analyzed. The results indicate that optimizing the CuO layer thickness within the range of 0.2–0.5 µm and tailoring the band gap energy within 1.3–1.7 eV range can significantly enhance the solar cell’s photovoltaic performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"114 3\",\"pages\":\"718 - 730\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-025-06699-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-025-06699-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用太阳能电池电容模拟器-一维(SCAPS-1D)软件研究了p-CuO/n-Si太阳能电池的光伏性能。通过实验确定了浸涂法合成的CuO吸收层的带隙能量和吸收系数等输入参数。通过综合结构和分析表征,证实了多晶CuO相的存在。该CuO层的光学带隙能量为1.5 eV,光学吸收系数为~8 × 104 cm−1,适合于高效太阳能电池的应用。模拟结果表明,p-CuO/n-Si异质结太阳能电池的开路电压为789 mV,短路电流密度为27.9 mA/cm²,填充系数为58%,总功率转换效率为12.98%,优于先前文献报道的值。此外,系统分析了CuO层厚度和带隙能量对太阳能电池关键性能指标的影响。结果表明,优化CuO层厚度在0.2 ~ 0.5µm范围内,裁剪带隙能量在1.3 ~ 1.7 eV范围内,可以显著提高太阳能电池的光伏性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High photovoltaic performances of a p-CuO/n-Si heterojunction prepared by a simple fabrication method

High photovoltaic performances of a p-CuO/n-Si heterojunction prepared by a simple fabrication method

This work investigates the photovoltaic performance of a p-CuO/n-Si solar cell using the solar cell capacitance simulator-one dimension (SCAPS-1D) software. The input parameters for the simulation, including the band gap energy and absorption coefficient, were experimentally determined for the CuO absorber layer synthesized via the dip-coating method. The presence of the polycrystalline CuO phase was confirmed through comprehensive structural and analytical characterization. The CuO layer exhibited an optical band gap energy of 1.5 eV and a high optical absorption coefficient of ~8 × 104 cm−1, demonstrating its suitability for high-efficiency solar cell applications. Simulations of the p-CuO/n-Si heterojunction solar cell revealed an open-circuit voltage of 789 mV, a short-circuit current density of 27.9 mA/cm², a fill factor of 58%, and an overall power conversion efficiency of 12.98%, outperforming previously reported values in the literature. Furthermore, the effect of the CuO layer’s thickness and band gap energy on solar cell’s key performance metrics was systematically analyzed. The results indicate that optimizing the CuO layer thickness within the range of 0.2–0.5 µm and tailoring the band gap energy within 1.3–1.7 eV range can significantly enhance the solar cell’s photovoltaic performance.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信