Yingyi Huang, Lei Wang, Jiaxi Zhou, Guijun Miao, Lulu Zhang, Michael G. Mauk, Lizeng Gao, Xianbo Qiu
{"title":"一个集成的离心微流控系统自动纳米酶ELISA侧流免疫分析在护理点测试","authors":"Yingyi Huang, Lei Wang, Jiaxi Zhou, Guijun Miao, Lulu Zhang, Michael G. Mauk, Lizeng Gao, Xianbo Qiu","doi":"10.1007/s10404-025-02812-9","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate and rapid detection of H1N1 viral specific protein is crucial for effective disease control and management. Traditional diagnostic methods based on ELISA immunoassay often require complex manual operations, long incubation times, and lack the integration needed for automated, high-throughput analysis. There is an urgent demand for a portable, sensitive, integrated, and fully automated diagnostic platform to address these challenges in medical diagnostics. We developed an automated diagnostic system that integrates nanozyme-based detection within a centrifugal microfluidic device for rapid H1N1 viral specific protein detection. The system utilizes nanozymes for signal amplification, leveraging nanozymes to reduce assay times. A high-resolution image sensor and image processing algorithm enable precise interrogation of test results, demonstrating significant improvements in sensitivity. The compact centrifugal microfluidic device automates the sequential delivery of samples, reagents, and nanozyme probes, seamlessly implements mixing, incubation, and liquid transfer. The system achieves a 50-fold sensitivity improvement over the conventional method based on colloidal gold lateral flow strips, with a test time of only 15 min. This work develops a fully automated, integrated diagnostic platform by combining nanozyme-enhanced immunoassay with automatic centrifugal microfluidics. The platform eliminates manual intervention, achieving high sensitivity and rapid detection of infectious disease viral specific protein. Its compact and integrated design makes it a versatile tool for point-of-care diagnostics.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated centrifugal microfluidic system for automatic nanozyme ELISA lateral flow immunoassay at point-of-care testing\",\"authors\":\"Yingyi Huang, Lei Wang, Jiaxi Zhou, Guijun Miao, Lulu Zhang, Michael G. Mauk, Lizeng Gao, Xianbo Qiu\",\"doi\":\"10.1007/s10404-025-02812-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accurate and rapid detection of H1N1 viral specific protein is crucial for effective disease control and management. Traditional diagnostic methods based on ELISA immunoassay often require complex manual operations, long incubation times, and lack the integration needed for automated, high-throughput analysis. There is an urgent demand for a portable, sensitive, integrated, and fully automated diagnostic platform to address these challenges in medical diagnostics. We developed an automated diagnostic system that integrates nanozyme-based detection within a centrifugal microfluidic device for rapid H1N1 viral specific protein detection. The system utilizes nanozymes for signal amplification, leveraging nanozymes to reduce assay times. A high-resolution image sensor and image processing algorithm enable precise interrogation of test results, demonstrating significant improvements in sensitivity. The compact centrifugal microfluidic device automates the sequential delivery of samples, reagents, and nanozyme probes, seamlessly implements mixing, incubation, and liquid transfer. The system achieves a 50-fold sensitivity improvement over the conventional method based on colloidal gold lateral flow strips, with a test time of only 15 min. This work develops a fully automated, integrated diagnostic platform by combining nanozyme-enhanced immunoassay with automatic centrifugal microfluidics. The platform eliminates manual intervention, achieving high sensitivity and rapid detection of infectious disease viral specific protein. Its compact and integrated design makes it a versatile tool for point-of-care diagnostics.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-025-02812-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02812-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
An integrated centrifugal microfluidic system for automatic nanozyme ELISA lateral flow immunoassay at point-of-care testing
The accurate and rapid detection of H1N1 viral specific protein is crucial for effective disease control and management. Traditional diagnostic methods based on ELISA immunoassay often require complex manual operations, long incubation times, and lack the integration needed for automated, high-throughput analysis. There is an urgent demand for a portable, sensitive, integrated, and fully automated diagnostic platform to address these challenges in medical diagnostics. We developed an automated diagnostic system that integrates nanozyme-based detection within a centrifugal microfluidic device for rapid H1N1 viral specific protein detection. The system utilizes nanozymes for signal amplification, leveraging nanozymes to reduce assay times. A high-resolution image sensor and image processing algorithm enable precise interrogation of test results, demonstrating significant improvements in sensitivity. The compact centrifugal microfluidic device automates the sequential delivery of samples, reagents, and nanozyme probes, seamlessly implements mixing, incubation, and liquid transfer. The system achieves a 50-fold sensitivity improvement over the conventional method based on colloidal gold lateral flow strips, with a test time of only 15 min. This work develops a fully automated, integrated diagnostic platform by combining nanozyme-enhanced immunoassay with automatic centrifugal microfluidics. The platform eliminates manual intervention, achieving high sensitivity and rapid detection of infectious disease viral specific protein. Its compact and integrated design makes it a versatile tool for point-of-care diagnostics.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).