{"title":"通过Fokker-Planck方程的基因调控网络模型的快速验证测试","authors":"Natalia López-Paleta, Eduardo Moreno-Barbosa, Jorge Velázquez-Castro","doi":"10.1007/s10867-025-09681-x","DOIUrl":null,"url":null,"abstract":"<div><p>Since Waddington proposed the concept of the “epigenetic landscape” in 1957, researchers have developed various methodologies to represent it in diverse processes. Studying the epigenetic landscape provides valuable qualitative information regarding cell development and the stability of phenotypic and morphogenetic patterns. Although Waddington’s original idea was a visual metaphor, a contemporary perspective relates it to the landscape formed by the basins of attraction of a dynamical system describing the temporal evolution of protein concentrations driven by a gene regulatory network. Transitions among these attractors can be driven by stochastic perturbations, with the cell state more likely to transition to the nearest attractor or to the one that presents the path of least resistance. In this study, we define the epigenetic landscape using the free energy potential obtained from the solution of the Fokker-Planck equation on the regulatory network. Specifically, we obtained a numerical approximate solution of the Fokker-Planck equation describing the <i>Arabidopsis thaliana</i> flower morphogenesis process. We observed good agreement between the coexpression matrix obtained from the Fokker-Planck equation and the experimental coexpression matrix. This paper proposes a method for obtaining this landscape by solving the Fokker-Planck equation (FPE) associated with a dynamical system describing the temporal evolution of protein concentrations involved in the process of interest. As these systems are high-dimensional and analytical solutions are often unfeasible, we propose a gamma mixture model to solve the FPE, transforming this problem into an optimization problem. This methodology can enhance the analysis of gene regulatory networks by directly relating theoretical mathematical models with experimental observations of coexpression matrices, thus providing a discriminating technique for competing models.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-025-09681-x.pdf","citationCount":"0","resultStr":"{\"title\":\"A fast validation test of gene regulatory network models via the Fokker-Planck equation\",\"authors\":\"Natalia López-Paleta, Eduardo Moreno-Barbosa, Jorge Velázquez-Castro\",\"doi\":\"10.1007/s10867-025-09681-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since Waddington proposed the concept of the “epigenetic landscape” in 1957, researchers have developed various methodologies to represent it in diverse processes. Studying the epigenetic landscape provides valuable qualitative information regarding cell development and the stability of phenotypic and morphogenetic patterns. Although Waddington’s original idea was a visual metaphor, a contemporary perspective relates it to the landscape formed by the basins of attraction of a dynamical system describing the temporal evolution of protein concentrations driven by a gene regulatory network. Transitions among these attractors can be driven by stochastic perturbations, with the cell state more likely to transition to the nearest attractor or to the one that presents the path of least resistance. In this study, we define the epigenetic landscape using the free energy potential obtained from the solution of the Fokker-Planck equation on the regulatory network. Specifically, we obtained a numerical approximate solution of the Fokker-Planck equation describing the <i>Arabidopsis thaliana</i> flower morphogenesis process. We observed good agreement between the coexpression matrix obtained from the Fokker-Planck equation and the experimental coexpression matrix. This paper proposes a method for obtaining this landscape by solving the Fokker-Planck equation (FPE) associated with a dynamical system describing the temporal evolution of protein concentrations involved in the process of interest. As these systems are high-dimensional and analytical solutions are often unfeasible, we propose a gamma mixture model to solve the FPE, transforming this problem into an optimization problem. This methodology can enhance the analysis of gene regulatory networks by directly relating theoretical mathematical models with experimental observations of coexpression matrices, thus providing a discriminating technique for competing models.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10867-025-09681-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-025-09681-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-025-09681-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A fast validation test of gene regulatory network models via the Fokker-Planck equation
Since Waddington proposed the concept of the “epigenetic landscape” in 1957, researchers have developed various methodologies to represent it in diverse processes. Studying the epigenetic landscape provides valuable qualitative information regarding cell development and the stability of phenotypic and morphogenetic patterns. Although Waddington’s original idea was a visual metaphor, a contemporary perspective relates it to the landscape formed by the basins of attraction of a dynamical system describing the temporal evolution of protein concentrations driven by a gene regulatory network. Transitions among these attractors can be driven by stochastic perturbations, with the cell state more likely to transition to the nearest attractor or to the one that presents the path of least resistance. In this study, we define the epigenetic landscape using the free energy potential obtained from the solution of the Fokker-Planck equation on the regulatory network. Specifically, we obtained a numerical approximate solution of the Fokker-Planck equation describing the Arabidopsis thaliana flower morphogenesis process. We observed good agreement between the coexpression matrix obtained from the Fokker-Planck equation and the experimental coexpression matrix. This paper proposes a method for obtaining this landscape by solving the Fokker-Planck equation (FPE) associated with a dynamical system describing the temporal evolution of protein concentrations involved in the process of interest. As these systems are high-dimensional and analytical solutions are often unfeasible, we propose a gamma mixture model to solve the FPE, transforming this problem into an optimization problem. This methodology can enhance the analysis of gene regulatory networks by directly relating theoretical mathematical models with experimental observations of coexpression matrices, thus providing a discriminating technique for competing models.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.