小振幅浅水长波Whitham-Broer-Kaup系统的解析解和数值解

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Abhilash Chand, Jugal Mohapatra
{"title":"小振幅浅水长波Whitham-Broer-Kaup系统的解析解和数值解","authors":"Abhilash Chand,&nbsp;Jugal Mohapatra","doi":"10.1007/s10773-025-06024-3","DOIUrl":null,"url":null,"abstract":"<div><p>The principal focus of this work is to explore numerical solutions of the classical Whitham-Broer-Kaup equations using the local discontinuous Galerkin method. The numerical methodology employs an explicit strong-stability-preserving higher-order Runge-Kutta method to estimate the temporal derivatives and the local discontinuous Galerkin method to estimate the spatial derivatives, generating a large coupled ordinary differential equations system. The analytical improved <span>\\( (G'/G) \\)</span>-expansion technique is also employed in this article to obtain new exact travelling wave solutions of the governing coupled Whitham-Broer-Kaup equations. Finally, some numerical experiments are performed, and all the simulation results are displayed in several tables and various two-dimensional and three-dimensional plots, which validate the satisfactory accuracy and efficacy of the implemented method.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and Numerical Solutions of the Whitham-Broer-Kaup System for Long Waves in Small-amplitude Shallow Water\",\"authors\":\"Abhilash Chand,&nbsp;Jugal Mohapatra\",\"doi\":\"10.1007/s10773-025-06024-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The principal focus of this work is to explore numerical solutions of the classical Whitham-Broer-Kaup equations using the local discontinuous Galerkin method. The numerical methodology employs an explicit strong-stability-preserving higher-order Runge-Kutta method to estimate the temporal derivatives and the local discontinuous Galerkin method to estimate the spatial derivatives, generating a large coupled ordinary differential equations system. The analytical improved <span>\\\\( (G'/G) \\\\)</span>-expansion technique is also employed in this article to obtain new exact travelling wave solutions of the governing coupled Whitham-Broer-Kaup equations. Finally, some numerical experiments are performed, and all the simulation results are displayed in several tables and various two-dimensional and three-dimensional plots, which validate the satisfactory accuracy and efficacy of the implemented method.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06024-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06024-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本工作的主要重点是利用局部不连续伽辽金方法探索经典Whitham-Broer-Kaup方程的数值解。数值方法采用显式强稳定高阶龙格-库塔法估计时间导数,局部不连续伽辽金法估计空间导数,生成一个大型耦合常微分方程组。本文还采用改进的\( (G'/G) \) -展开技术,得到了控制耦合Whitham-Broer-Kaup方程新的行波精确解。最后进行了数值实验,仿真结果显示在多个表格和各种二维和三维图中,验证了所实现方法的精度和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical and Numerical Solutions of the Whitham-Broer-Kaup System for Long Waves in Small-amplitude Shallow Water

The principal focus of this work is to explore numerical solutions of the classical Whitham-Broer-Kaup equations using the local discontinuous Galerkin method. The numerical methodology employs an explicit strong-stability-preserving higher-order Runge-Kutta method to estimate the temporal derivatives and the local discontinuous Galerkin method to estimate the spatial derivatives, generating a large coupled ordinary differential equations system. The analytical improved \( (G'/G) \)-expansion technique is also employed in this article to obtain new exact travelling wave solutions of the governing coupled Whitham-Broer-Kaup equations. Finally, some numerical experiments are performed, and all the simulation results are displayed in several tables and various two-dimensional and three-dimensional plots, which validate the satisfactory accuracy and efficacy of the implemented method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信