Juan Du, Jincheng Wu, Qinqin Song, Shuangru Li, Youwang Hong, Aizaz Anwar, Quanyou Fu, Jisong Liu
{"title":"间充质干细胞外泌体通过降低METTL3-NEAT1轴来调节TGFβ/Smad3,从而抑制乳房手术后疤痕的进展","authors":"Juan Du, Jincheng Wu, Qinqin Song, Shuangru Li, Youwang Hong, Aizaz Anwar, Quanyou Fu, Jisong Liu","doi":"10.1007/s10735-025-10441-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Scars are traces of tissue loss left behind by connective tissue overgrowth and repair. Studies in recent years have shown that mesenchymal stem cell exosomes (MSC-Exo) have the ability to inhibit and repair cutaneous scarring, but their specific role in post-breast surgery scar formation and the mechanisms behind it remain enigmatic.</p><h3>Methods</h3><p>Extraction and characterization of exosomes from mesenchymal stem cells (MSCs). Western Blot and RT-qPCR were used to evaluate the expression of fibrillar protein and TGF-β/Smad3 in mammary hypertrophic scar fibroblasts (MHSFs) stimulated with MSC-Exo, sh-METTL3, sh-NEAT1 and their negative controls. Construction of a mouse model of proliferative scar formation using mechanical tension and detection of fibronectin and pathway protein expression using Western Blot and RT-qPCR. Pathologic changes of mammary scarring in mice using HE staining, Masson staining and immunofluorescence.</p><h3>Results</h3><p>Both in vitro and in vivo, MSC-Exo, sh-METTL3 and sh-NEAT1 were shown to decrease the expression of COL1A1, COL3A1, α-SMA, fibronectin, TGF-β, p-Smad2/Smad2, p-Smad3/Smad3, by Western Blot and RT-qPCR. In addition, improved lesions and reduced collagen deposition were observed in mice by HE and Masson assays.</p><h3>Conclusions</h3><p>In summary, our study revealed that exosomes of MSCs function through the m6A methyltransferase METTL3, which regulates the NEAT1/TGF-β/Smad3 axis to slow down the rate of scar formation after breast surgery.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesenchymal stem cell exosomes regulate TGFβ/Smad3 by decreasing the METTL3-NEAT1 axis to inhibit scar progression after breast surgery\",\"authors\":\"Juan Du, Jincheng Wu, Qinqin Song, Shuangru Li, Youwang Hong, Aizaz Anwar, Quanyou Fu, Jisong Liu\",\"doi\":\"10.1007/s10735-025-10441-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Scars are traces of tissue loss left behind by connective tissue overgrowth and repair. Studies in recent years have shown that mesenchymal stem cell exosomes (MSC-Exo) have the ability to inhibit and repair cutaneous scarring, but their specific role in post-breast surgery scar formation and the mechanisms behind it remain enigmatic.</p><h3>Methods</h3><p>Extraction and characterization of exosomes from mesenchymal stem cells (MSCs). Western Blot and RT-qPCR were used to evaluate the expression of fibrillar protein and TGF-β/Smad3 in mammary hypertrophic scar fibroblasts (MHSFs) stimulated with MSC-Exo, sh-METTL3, sh-NEAT1 and their negative controls. Construction of a mouse model of proliferative scar formation using mechanical tension and detection of fibronectin and pathway protein expression using Western Blot and RT-qPCR. Pathologic changes of mammary scarring in mice using HE staining, Masson staining and immunofluorescence.</p><h3>Results</h3><p>Both in vitro and in vivo, MSC-Exo, sh-METTL3 and sh-NEAT1 were shown to decrease the expression of COL1A1, COL3A1, α-SMA, fibronectin, TGF-β, p-Smad2/Smad2, p-Smad3/Smad3, by Western Blot and RT-qPCR. In addition, improved lesions and reduced collagen deposition were observed in mice by HE and Masson assays.</p><h3>Conclusions</h3><p>In summary, our study revealed that exosomes of MSCs function through the m6A methyltransferase METTL3, which regulates the NEAT1/TGF-β/Smad3 axis to slow down the rate of scar formation after breast surgery.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":\"56 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-025-10441-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10441-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mesenchymal stem cell exosomes regulate TGFβ/Smad3 by decreasing the METTL3-NEAT1 axis to inhibit scar progression after breast surgery
Background
Scars are traces of tissue loss left behind by connective tissue overgrowth and repair. Studies in recent years have shown that mesenchymal stem cell exosomes (MSC-Exo) have the ability to inhibit and repair cutaneous scarring, but their specific role in post-breast surgery scar formation and the mechanisms behind it remain enigmatic.
Methods
Extraction and characterization of exosomes from mesenchymal stem cells (MSCs). Western Blot and RT-qPCR were used to evaluate the expression of fibrillar protein and TGF-β/Smad3 in mammary hypertrophic scar fibroblasts (MHSFs) stimulated with MSC-Exo, sh-METTL3, sh-NEAT1 and their negative controls. Construction of a mouse model of proliferative scar formation using mechanical tension and detection of fibronectin and pathway protein expression using Western Blot and RT-qPCR. Pathologic changes of mammary scarring in mice using HE staining, Masson staining and immunofluorescence.
Results
Both in vitro and in vivo, MSC-Exo, sh-METTL3 and sh-NEAT1 were shown to decrease the expression of COL1A1, COL3A1, α-SMA, fibronectin, TGF-β, p-Smad2/Smad2, p-Smad3/Smad3, by Western Blot and RT-qPCR. In addition, improved lesions and reduced collagen deposition were observed in mice by HE and Masson assays.
Conclusions
In summary, our study revealed that exosomes of MSCs function through the m6A methyltransferase METTL3, which regulates the NEAT1/TGF-β/Smad3 axis to slow down the rate of scar formation after breast surgery.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.