Bandita Dutta, Debarati Chatterjee, Arina Guha, Rina Rani Ray
{"title":"电子垃圾中多芳烃的绿色处理","authors":"Bandita Dutta, Debarati Chatterjee, Arina Guha, Rina Rani Ray","doi":"10.1007/s10532-025-10140-6","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including <i>Haemophilus</i> spp., <i>Mycobacterium</i> spp., <i>Paenibacillus</i> spp., <i>Pseudomonas aeruginosa</i>, <i>P. fluorescens</i>, <i>Rhodococcus</i> spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green treatments for polyaromatic hydrocarbons in e-wastes\",\"authors\":\"Bandita Dutta, Debarati Chatterjee, Arina Guha, Rina Rani Ray\",\"doi\":\"10.1007/s10532-025-10140-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including <i>Haemophilus</i> spp., <i>Mycobacterium</i> spp., <i>Paenibacillus</i> spp., <i>Pseudomonas aeruginosa</i>, <i>P. fluorescens</i>, <i>Rhodococcus</i> spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10140-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10140-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Green treatments for polyaromatic hydrocarbons in e-wastes
Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including Haemophilus spp., Mycobacterium spp., Paenibacillus spp., Pseudomonas aeruginosa, P. fluorescens, Rhodococcus spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.