下一代储能器件中掺杂氯化钠的环保固体聚合物电解质:结构和电化学见解

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vipin Cyriac, Ismayil, Kuldeep Mishra, Ankitha Rao, Riyadh Abdekadir Khellouf, Saraswati P. Masti and I. M. Noor
{"title":"下一代储能器件中掺杂氯化钠的环保固体聚合物电解质:结构和电化学见解","authors":"Vipin Cyriac, Ismayil, Kuldeep Mishra, Ankitha Rao, Riyadh Abdekadir Khellouf, Saraswati P. Masti and I. M. Noor","doi":"10.1039/D5MA00107B","DOIUrl":null,"url":null,"abstract":"<p >One of the environmental challenges of energy storage devices is ensuring sustainable manufacturing and disposal practices to minimize hazardous waste. In this study, a blend of green polymers, chitosan (CS) and polyvinyl alcohol (PVA) is used as a host matrix to create flexible ion-conducting films, with ion donating NaClO<small><sub>4</sub></small> added to enable ion transport. A significant polymer–salt interaction is evident from the FTIR investigations. Impedance spectra reveal a decrease in the bulk resistance with increasing salt content, highlighting the potential of the system for energy storage applications. The optimized bulk conductivity is improved from (1.43 ± 0.26) × 10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small> for the pure blend to (5.23 ± 0.27) × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> for the composition with 35 wt% NaClO<small><sub>4</sub></small>. The ion transport properties, investigated using the Schutt and Gerdes (S–G) model, reveal a strong dependency of conductivity on the carrier concentration over ion mobility. Linear sweep voltammetry (LSV) showed the high electrochemical stability of PCP35 up to 2.6 V. The ionic transference number close to unity confirms the purely ionic nature of the optimized composition. The electric-double layer capacitor (EDLC) comprising the optimized electrolyte composition delivers a specific capacitance of 20.58 F g<small><sup>−1</sup></small> at 0.05 mA g<small><sup>−1</sup></small>, with energy and power densities of 2.69 W h kg<small><sup>−1</sup></small> and 97 W kg<small><sup>−1</sup></small>, respectively.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 10","pages":" 3149-3170"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00107b?page=search","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly solid polymer electrolytes doped with NaClO4 for next-generation energy storage devices: structural and electrochemical insights†\",\"authors\":\"Vipin Cyriac, Ismayil, Kuldeep Mishra, Ankitha Rao, Riyadh Abdekadir Khellouf, Saraswati P. Masti and I. M. Noor\",\"doi\":\"10.1039/D5MA00107B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >One of the environmental challenges of energy storage devices is ensuring sustainable manufacturing and disposal practices to minimize hazardous waste. In this study, a blend of green polymers, chitosan (CS) and polyvinyl alcohol (PVA) is used as a host matrix to create flexible ion-conducting films, with ion donating NaClO<small><sub>4</sub></small> added to enable ion transport. A significant polymer–salt interaction is evident from the FTIR investigations. Impedance spectra reveal a decrease in the bulk resistance with increasing salt content, highlighting the potential of the system for energy storage applications. The optimized bulk conductivity is improved from (1.43 ± 0.26) × 10<small><sup>−8</sup></small> S cm<small><sup>−1</sup></small> for the pure blend to (5.23 ± 0.27) × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> for the composition with 35 wt% NaClO<small><sub>4</sub></small>. The ion transport properties, investigated using the Schutt and Gerdes (S–G) model, reveal a strong dependency of conductivity on the carrier concentration over ion mobility. Linear sweep voltammetry (LSV) showed the high electrochemical stability of PCP35 up to 2.6 V. The ionic transference number close to unity confirms the purely ionic nature of the optimized composition. The electric-double layer capacitor (EDLC) comprising the optimized electrolyte composition delivers a specific capacitance of 20.58 F g<small><sup>−1</sup></small> at 0.05 mA g<small><sup>−1</sup></small>, with energy and power densities of 2.69 W h kg<small><sup>−1</sup></small> and 97 W kg<small><sup>−1</sup></small>, respectively.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 10\",\"pages\":\" 3149-3170\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00107b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00107b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00107b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

储能设备的环境挑战之一是确保可持续的制造和处置实践,以尽量减少危险废物。在这项研究中,使用绿色聚合物,壳聚糖(CS)和聚乙烯醇(PVA)的混合物作为宿主基质来创建柔性离子导电膜,并添加离子供体NaClO4以实现离子传输。从FTIR研究中可以明显看出聚合物-盐的相互作用。阻抗谱显示,随着盐含量的增加,体电阻降低,突出了该系统在储能应用方面的潜力。优化后的体积电导率从纯共混物的(1.43±0.26)× 10−8 S cm−1提高到含35 wt% NaClO4的组合物的(5.23±0.27)× 10−4 S cm−1。使用Schutt和Gerdes (S-G)模型研究的离子输运特性揭示了电导率与载流子浓度之间的强烈依赖关系。线性扫描伏安法(LSV)表明PCP35在2.6 V以下具有较高的电化学稳定性。离子转移数接近1,证实了优化组合物的纯离子性质。该双电层电容器(EDLC)在0.05 mA g−1时的比电容为20.58 F g−1,能量密度和功率密度分别为2.69 W h kg−1和97 W kg−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eco-friendly solid polymer electrolytes doped with NaClO4 for next-generation energy storage devices: structural and electrochemical insights†

One of the environmental challenges of energy storage devices is ensuring sustainable manufacturing and disposal practices to minimize hazardous waste. In this study, a blend of green polymers, chitosan (CS) and polyvinyl alcohol (PVA) is used as a host matrix to create flexible ion-conducting films, with ion donating NaClO4 added to enable ion transport. A significant polymer–salt interaction is evident from the FTIR investigations. Impedance spectra reveal a decrease in the bulk resistance with increasing salt content, highlighting the potential of the system for energy storage applications. The optimized bulk conductivity is improved from (1.43 ± 0.26) × 10−8 S cm−1 for the pure blend to (5.23 ± 0.27) × 10−4 S cm−1 for the composition with 35 wt% NaClO4. The ion transport properties, investigated using the Schutt and Gerdes (S–G) model, reveal a strong dependency of conductivity on the carrier concentration over ion mobility. Linear sweep voltammetry (LSV) showed the high electrochemical stability of PCP35 up to 2.6 V. The ionic transference number close to unity confirms the purely ionic nature of the optimized composition. The electric-double layer capacitor (EDLC) comprising the optimized electrolyte composition delivers a specific capacitance of 20.58 F g−1 at 0.05 mA g−1, with energy and power densities of 2.69 W h kg−1 and 97 W kg−1, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信