用密度泛函理论模型研究了氨还原氧化铁的不同反应机理

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Huanran Wang, Zhezi Zhang, Chiemeka Onyeka Okoye, Xianchun Li and Dongke Zhang
{"title":"用密度泛函理论模型研究了氨还原氧化铁的不同反应机理","authors":"Huanran Wang, Zhezi Zhang, Chiemeka Onyeka Okoye, Xianchun Li and Dongke Zhang","doi":"10.1039/D5NJ00840A","DOIUrl":null,"url":null,"abstract":"<p >Several conceivable mechanisms of NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>, represented by the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface, have been hypothesised and examined using density functional theory (DFT) modelling. The proposed reaction mechanisms include NH<small><sub>3</sub></small> adsorption, NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> to H<small><sub>2</sub></small>O, NH<small><sub>3</sub></small> dissociation to H<small><sub>2</sub></small>, and NH<small><sub>3</sub></small> oxidation to NO, with the energy barrier of each reaction calculated. The most likely pathway of NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> to form H<small><sub>2</sub></small>O involves NH<small><sub>3</sub></small> first adsorbing on an Fe site of the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface. Subsequently, two H atoms are transferred to the adjacent O sites. One H atom from the resulting NH then combines with a surface hydroxyl group to form H<small><sub>2</sub></small>O. For NH<small><sub>3</sub></small> dissociation into H<small><sub>2</sub></small>, the most probable pathway involves the combination of the H atom from the resulting NH with an H atom from NH<small><sub>3</sub></small> dehydrogenation adsorbed on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface to form H<small><sub>2</sub></small>. Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> reduction creates oxygen vacancies on the surface, which leads to nitrogen migration from the Fe site to these vacancies, forming Fe<small><sub>3</sub></small>N. The adsorbed N atom also bonds with the O atom on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface to form NO. The activation energy of H<small><sub>2</sub></small>O formation is lower than that of H<small><sub>2</sub></small> formation on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 20","pages":" 8341-8351"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative reaction mechanisms of ammonia reduction of iron oxide examined using density functional theory modelling†\",\"authors\":\"Huanran Wang, Zhezi Zhang, Chiemeka Onyeka Okoye, Xianchun Li and Dongke Zhang\",\"doi\":\"10.1039/D5NJ00840A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Several conceivable mechanisms of NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>, represented by the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface, have been hypothesised and examined using density functional theory (DFT) modelling. The proposed reaction mechanisms include NH<small><sub>3</sub></small> adsorption, NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> to H<small><sub>2</sub></small>O, NH<small><sub>3</sub></small> dissociation to H<small><sub>2</sub></small>, and NH<small><sub>3</sub></small> oxidation to NO, with the energy barrier of each reaction calculated. The most likely pathway of NH<small><sub>3</sub></small> reduction of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> to form H<small><sub>2</sub></small>O involves NH<small><sub>3</sub></small> first adsorbing on an Fe site of the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface. Subsequently, two H atoms are transferred to the adjacent O sites. One H atom from the resulting NH then combines with a surface hydroxyl group to form H<small><sub>2</sub></small>O. For NH<small><sub>3</sub></small> dissociation into H<small><sub>2</sub></small>, the most probable pathway involves the combination of the H atom from the resulting NH with an H atom from NH<small><sub>3</sub></small> dehydrogenation adsorbed on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface to form H<small><sub>2</sub></small>. Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> reduction creates oxygen vacancies on the surface, which leads to nitrogen migration from the Fe site to these vacancies, forming Fe<small><sub>3</sub></small>N. The adsorbed N atom also bonds with the O atom on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface to form NO. The activation energy of H<small><sub>2</sub></small>O formation is lower than that of H<small><sub>2</sub></small> formation on the Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> (001)-B surface.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 20\",\"pages\":\" 8341-8351\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00840a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00840a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以Fe3O4 (001)-B表面为代表的NH3还原Fe3O4的几种可能机制,已经用密度泛函理论(DFT)模型进行了假设和检验。提出了NH3吸附、NH3还原Fe3O4生成H2O、NH3解离生成H2、NH3氧化生成NO等反应机理,并计算了各反应的能垒。NH3首先吸附在Fe3O4 (001)-B表面的铁位点上,是Fe3O4最可能还原成H2O的途径。随后,两个氢原子被转移到相邻的O位上。nhh中的一个H原子与表面的羟基结合形成H2O。对于NH3解离成H2,最可能的途径是NH3脱氢后的H原子与吸附在Fe3O4 (001)-B表面的NH3脱氢后的H原子结合形成H2。Fe3O4还原在表面产生氧空位,导致氮从Fe位迁移到这些空位,形成Fe3N。吸附的N原子还与Fe3O4 (001)-B表面的O原子结合形成NO。在Fe3O4 (001)-B表面生成H2O的活化能低于生成H2的活化能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative reaction mechanisms of ammonia reduction of iron oxide examined using density functional theory modelling†

Several conceivable mechanisms of NH3 reduction of Fe3O4, represented by the Fe3O4 (001)-B surface, have been hypothesised and examined using density functional theory (DFT) modelling. The proposed reaction mechanisms include NH3 adsorption, NH3 reduction of Fe3O4 to H2O, NH3 dissociation to H2, and NH3 oxidation to NO, with the energy barrier of each reaction calculated. The most likely pathway of NH3 reduction of Fe3O4 to form H2O involves NH3 first adsorbing on an Fe site of the Fe3O4 (001)-B surface. Subsequently, two H atoms are transferred to the adjacent O sites. One H atom from the resulting NH then combines with a surface hydroxyl group to form H2O. For NH3 dissociation into H2, the most probable pathway involves the combination of the H atom from the resulting NH with an H atom from NH3 dehydrogenation adsorbed on the Fe3O4 (001)-B surface to form H2. Fe3O4 reduction creates oxygen vacancies on the surface, which leads to nitrogen migration from the Fe site to these vacancies, forming Fe3N. The adsorbed N atom also bonds with the O atom on the Fe3O4 (001)-B surface to form NO. The activation energy of H2O formation is lower than that of H2 formation on the Fe3O4 (001)-B surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信