蜂窝状结构Ta3N5泡沫纳米板的无模板合成,具有扩展的光吸收,丰富的活性位点和快速电荷输运的可见光驱动H2演化†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jiudi Zhang, Ruyu Zhang, Xiaowei Jia, Jinming Li, Mingliang Sun, Shikang Zhang, Zhenfu Guo, Xiaoyan Jiao, Xianchun Liu, Zhanshuang Jin, Junjie Li and Yan Xing
{"title":"蜂窝状结构Ta3N5泡沫纳米板的无模板合成,具有扩展的光吸收,丰富的活性位点和快速电荷输运的可见光驱动H2演化†","authors":"Jiudi Zhang, Ruyu Zhang, Xiaowei Jia, Jinming Li, Mingliang Sun, Shikang Zhang, Zhenfu Guo, Xiaoyan Jiao, Xianchun Liu, Zhanshuang Jin, Junjie Li and Yan Xing","doi":"10.1039/D5NJ00730E","DOIUrl":null,"url":null,"abstract":"<p >Tantalum nitride (Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>) with suitable band structure and high theoretical solar-to-hydrogen energy conversion efficiency (15.9%) is regarded as one of the most promising semiconductor-based photocatalysts for hydrogen evolution <em>via</em> water splitting. However, it is practically constrained by the slow carrier mobility, fast electron–hole recombination and unabundant catalytic active sites. Herein, honeycomb-structured Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> foam nanoplates were successfully synthesized using a simple template-free strategy. It can not only capture broader visible light to generate the high concentration of photo-generated carriers, but also accelerate the rapid transport/separation of carriers and provide abundant active sites to accelerate the kinetics of water splitting reaction. Therefore, honeycomb-structured Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> exhibits excellent photocatalytic performance with a remarkably enhanced H<small><sub>2</sub></small> production rate of 59.16 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, which is 22.7 times higher than that of the conventional bulk Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>. Moreover, the unique Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> with honeycomb structure has outstanding stability and recycling ability. This work provides a simple and effective strategy for the preparation of Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>-based photocatalysts for efficient and stable H<small><sub>2</sub></small> production.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 20","pages":" 8485-8493"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Template-free synthesis of honeycomb-structured Ta3N5 foam nanoplates with expanded light absorption, abundant active sites and fast charges transport for visible-light-driven H2 evolution†\",\"authors\":\"Jiudi Zhang, Ruyu Zhang, Xiaowei Jia, Jinming Li, Mingliang Sun, Shikang Zhang, Zhenfu Guo, Xiaoyan Jiao, Xianchun Liu, Zhanshuang Jin, Junjie Li and Yan Xing\",\"doi\":\"10.1039/D5NJ00730E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Tantalum nitride (Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>) with suitable band structure and high theoretical solar-to-hydrogen energy conversion efficiency (15.9%) is regarded as one of the most promising semiconductor-based photocatalysts for hydrogen evolution <em>via</em> water splitting. However, it is practically constrained by the slow carrier mobility, fast electron–hole recombination and unabundant catalytic active sites. Herein, honeycomb-structured Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> foam nanoplates were successfully synthesized using a simple template-free strategy. It can not only capture broader visible light to generate the high concentration of photo-generated carriers, but also accelerate the rapid transport/separation of carriers and provide abundant active sites to accelerate the kinetics of water splitting reaction. Therefore, honeycomb-structured Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> exhibits excellent photocatalytic performance with a remarkably enhanced H<small><sub>2</sub></small> production rate of 59.16 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, which is 22.7 times higher than that of the conventional bulk Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>. Moreover, the unique Ta<small><sub>3</sub></small>N<small><sub>5</sub></small> with honeycomb structure has outstanding stability and recycling ability. This work provides a simple and effective strategy for the preparation of Ta<small><sub>3</sub></small>N<small><sub>5</sub></small>-based photocatalysts for efficient and stable H<small><sub>2</sub></small> production.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 20\",\"pages\":\" 8485-8493\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00730e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00730e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化钽(Ta3N5)具有合适的能带结构和较高的理论太阳能-氢能量转换效率(15.9%),被认为是最有前途的水裂解析氢半导体光催化剂之一。然而,它在实践中受到载流子迁移率慢、电子-空穴复合快和催化活性位点不丰富等因素的制约。本文采用简单的无模板策略成功合成了蜂窝状结构的Ta3N5泡沫纳米板。它不仅可以捕获更广泛的可见光,产生高浓度的光生载流子,而且可以加速载流子的快速运输/分离,并提供丰富的活性位点来加速水裂解反应动力学。因此,蜂窝结构的Ta3N5表现出优异的光催化性能,其产氢率显著提高,达到59.16 μmol h−1 g−1,是传统体状Ta3N5的22.7倍。此外,独特的蜂窝结构的Ta3N5具有突出的稳定性和回收能力。本研究为制备高效稳定产氢的ta3n5光催化剂提供了一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Template-free synthesis of honeycomb-structured Ta3N5 foam nanoplates with expanded light absorption, abundant active sites and fast charges transport for visible-light-driven H2 evolution†

Tantalum nitride (Ta3N5) with suitable band structure and high theoretical solar-to-hydrogen energy conversion efficiency (15.9%) is regarded as one of the most promising semiconductor-based photocatalysts for hydrogen evolution via water splitting. However, it is practically constrained by the slow carrier mobility, fast electron–hole recombination and unabundant catalytic active sites. Herein, honeycomb-structured Ta3N5 foam nanoplates were successfully synthesized using a simple template-free strategy. It can not only capture broader visible light to generate the high concentration of photo-generated carriers, but also accelerate the rapid transport/separation of carriers and provide abundant active sites to accelerate the kinetics of water splitting reaction. Therefore, honeycomb-structured Ta3N5 exhibits excellent photocatalytic performance with a remarkably enhanced H2 production rate of 59.16 μmol h−1 g−1, which is 22.7 times higher than that of the conventional bulk Ta3N5. Moreover, the unique Ta3N5 with honeycomb structure has outstanding stability and recycling ability. This work provides a simple and effective strategy for the preparation of Ta3N5-based photocatalysts for efficient and stable H2 production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信