基于纤维素纳米晶模板的超小型缺陷工程UiO-66用于先进的二氧化碳捕获膜

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Xinyu Wang , Seyed Fatemeh Seyedpour , Sabahudin Hrapovic , Usha D. Hemraz , Mohammad Mozafari , Masoud Soroush , Muhammad Amirul Islam , Arash Mollahosseini , Mohtada Sadrzadeh , Jae-Young Cho
{"title":"基于纤维素纳米晶模板的超小型缺陷工程UiO-66用于先进的二氧化碳捕获膜","authors":"Xinyu Wang ,&nbsp;Seyed Fatemeh Seyedpour ,&nbsp;Sabahudin Hrapovic ,&nbsp;Usha D. Hemraz ,&nbsp;Mohammad Mozafari ,&nbsp;Masoud Soroush ,&nbsp;Muhammad Amirul Islam ,&nbsp;Arash Mollahosseini ,&nbsp;Mohtada Sadrzadeh ,&nbsp;Jae-Young Cho","doi":"10.1016/j.clet.2025.100999","DOIUrl":null,"url":null,"abstract":"<div><div>Global warming and associated climate change, primarily driven by greenhouse gas emissions, are no longer a forecast but are now undeniable realities. Although membrane technology presents a highly cost-effective approach for carbon dioxide (CO<sub>2</sub>) capture, further research is required to overcome the inherent trade-off between selectivity and permeability to achieve enhanced performance. A novel defect-engineered ultrasmall cellulose nanocrystal (CNC)-templated UiO-66 MOF (CNC-UiO-66 hybrid) was synthesized to improve the performance of Pebax membranes. The elongated geometry of the CNC-UiO-66 hybrid creates extended facilitated transport channels for CO<sub>2</sub>, while the highly defective structure, induced by the presence of CNC during synthesis, enhances coordination interactions with both CO<sub>2</sub> and the polymer matrix. As a result, Pebax incorporated with CNC-UiO-66 demonstrated increased crystallinity and thermal stability. The incorporation of as little as 1 wt% of the CNC-UiO-66 hybrid into Pebax membranes achieved a remarkable CO<sub>2</sub> permeability of 1442 Barrer and a selectivity of 40, surpassing the Robeson upper bound (2008) for CO<sub>2</sub>/N<sub>2</sub> separation. Cost analysis suggested that this membrane could reduce carbon capture costs to 62 USD per tonne, 10 USD less than conventional membranes. These results highlight the potential of CNC-UiO-66 hybrid membranes for efficient and cost-effective CCUS applications, particularly in flue gas treatment.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"27 ","pages":"Article 100999"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-small defect-engineered UiO-66 on cellulose nanocrystal template for advanced carbon dioxide capture membrane\",\"authors\":\"Xinyu Wang ,&nbsp;Seyed Fatemeh Seyedpour ,&nbsp;Sabahudin Hrapovic ,&nbsp;Usha D. Hemraz ,&nbsp;Mohammad Mozafari ,&nbsp;Masoud Soroush ,&nbsp;Muhammad Amirul Islam ,&nbsp;Arash Mollahosseini ,&nbsp;Mohtada Sadrzadeh ,&nbsp;Jae-Young Cho\",\"doi\":\"10.1016/j.clet.2025.100999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global warming and associated climate change, primarily driven by greenhouse gas emissions, are no longer a forecast but are now undeniable realities. Although membrane technology presents a highly cost-effective approach for carbon dioxide (CO<sub>2</sub>) capture, further research is required to overcome the inherent trade-off between selectivity and permeability to achieve enhanced performance. A novel defect-engineered ultrasmall cellulose nanocrystal (CNC)-templated UiO-66 MOF (CNC-UiO-66 hybrid) was synthesized to improve the performance of Pebax membranes. The elongated geometry of the CNC-UiO-66 hybrid creates extended facilitated transport channels for CO<sub>2</sub>, while the highly defective structure, induced by the presence of CNC during synthesis, enhances coordination interactions with both CO<sub>2</sub> and the polymer matrix. As a result, Pebax incorporated with CNC-UiO-66 demonstrated increased crystallinity and thermal stability. The incorporation of as little as 1 wt% of the CNC-UiO-66 hybrid into Pebax membranes achieved a remarkable CO<sub>2</sub> permeability of 1442 Barrer and a selectivity of 40, surpassing the Robeson upper bound (2008) for CO<sub>2</sub>/N<sub>2</sub> separation. Cost analysis suggested that this membrane could reduce carbon capture costs to 62 USD per tonne, 10 USD less than conventional membranes. These results highlight the potential of CNC-UiO-66 hybrid membranes for efficient and cost-effective CCUS applications, particularly in flue gas treatment.</div></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"27 \",\"pages\":\"Article 100999\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790825001223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825001223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

主要由温室气体排放驱动的全球变暖和相关的气候变化不再是一种预测,而是现在不可否认的现实。尽管膜技术为二氧化碳捕获提供了一种高成本效益的方法,但需要进一步的研究来克服选择性和渗透性之间的固有权衡,以实现更高的性能。为了提高Pebax膜的性能,合成了一种新型的缺陷工程超小纤维素纳米晶体(CNC)模板UiO-66 MOF (CNC-UiO-66杂化)。CNC- uio -66混合物的细长几何形状为CO2创造了扩展的便利运输通道,而在合成过程中由CNC引起的高度缺陷结构增强了与CO2和聚合物基质的配位相互作用。因此,与CNC-UiO-66结合的Pebax显示出更高的结晶度和热稳定性。在Pebax膜中掺入1 wt%的CNC-UiO-66混合物,获得了1442 Barrer的CO2渗透率和40的选择性,超过了Robeson上限(2008)CO2/N2分离。成本分析表明,这种膜可以将碳捕获成本降低到每吨62美元,比传统膜低10美元。这些结果突出了CNC-UiO-66混合膜在高效和具有成本效益的CCUS应用方面的潜力,特别是在烟气处理方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-small defect-engineered UiO-66 on cellulose nanocrystal template for advanced carbon dioxide capture membrane
Global warming and associated climate change, primarily driven by greenhouse gas emissions, are no longer a forecast but are now undeniable realities. Although membrane technology presents a highly cost-effective approach for carbon dioxide (CO2) capture, further research is required to overcome the inherent trade-off between selectivity and permeability to achieve enhanced performance. A novel defect-engineered ultrasmall cellulose nanocrystal (CNC)-templated UiO-66 MOF (CNC-UiO-66 hybrid) was synthesized to improve the performance of Pebax membranes. The elongated geometry of the CNC-UiO-66 hybrid creates extended facilitated transport channels for CO2, while the highly defective structure, induced by the presence of CNC during synthesis, enhances coordination interactions with both CO2 and the polymer matrix. As a result, Pebax incorporated with CNC-UiO-66 demonstrated increased crystallinity and thermal stability. The incorporation of as little as 1 wt% of the CNC-UiO-66 hybrid into Pebax membranes achieved a remarkable CO2 permeability of 1442 Barrer and a selectivity of 40, surpassing the Robeson upper bound (2008) for CO2/N2 separation. Cost analysis suggested that this membrane could reduce carbon capture costs to 62 USD per tonne, 10 USD less than conventional membranes. These results highlight the potential of CNC-UiO-66 hybrid membranes for efficient and cost-effective CCUS applications, particularly in flue gas treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信