非线性扩散快速反应极限问题的自相似解

IF 1.2 3区 数学 Q1 MATHEMATICS
Elaine Crooks, Yini Du
{"title":"非线性扩散快速反应极限问题的自相似解","authors":"Elaine Crooks,&nbsp;Yini Du","doi":"10.1016/j.jmaa.2025.129636","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an approach to characterising self-similar fast-reaction limits of systems with nonlinear diffusion. For appropriate initial data, in the fast-reaction limit <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span>, spatial segregation results in the two components of the original systems converging to the positive and negative parts of a self-similar limit profile <span><math><mi>f</mi><mo>(</mo><mi>η</mi><mo>)</mo></math></span>, where <span><math><mi>η</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msqrt><mrow><mi>t</mi></mrow></msqrt></mrow></mfrac></math></span>, that satisfies one of four ordinary differential systems. The existence of these self-similar solutions of the <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> limit problems is proved by using shooting methods which focus on <em>a</em>, the position of the free boundary which separates the regions where the solution is positive and where it is negative, and <em>γ</em>, the derivative of <span><math><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> at <span><math><mi>η</mi><mo>=</mo><mi>a</mi></math></span>. The position of the free boundary gives us intuition about how one substance penetrates into the other, and for specific forms of nonlinear diffusion, the relationship between the given form of the nonlinear diffusion and the position of the free boundary is also studied.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129636"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-similar solutions of fast-reaction limit problems with nonlinear diffusion\",\"authors\":\"Elaine Crooks,&nbsp;Yini Du\",\"doi\":\"10.1016/j.jmaa.2025.129636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present an approach to characterising self-similar fast-reaction limits of systems with nonlinear diffusion. For appropriate initial data, in the fast-reaction limit <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span>, spatial segregation results in the two components of the original systems converging to the positive and negative parts of a self-similar limit profile <span><math><mi>f</mi><mo>(</mo><mi>η</mi><mo>)</mo></math></span>, where <span><math><mi>η</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><msqrt><mrow><mi>t</mi></mrow></msqrt></mrow></mfrac></math></span>, that satisfies one of four ordinary differential systems. The existence of these self-similar solutions of the <span><math><mi>k</mi><mo>→</mo><mo>∞</mo></math></span> limit problems is proved by using shooting methods which focus on <em>a</em>, the position of the free boundary which separates the regions where the solution is positive and where it is negative, and <em>γ</em>, the derivative of <span><math><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> at <span><math><mi>η</mi><mo>=</mo><mi>a</mi></math></span>. The position of the free boundary gives us intuition about how one substance penetrates into the other, and for specific forms of nonlinear diffusion, the relationship between the given form of the nonlinear diffusion and the position of the free boundary is also studied.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 2\",\"pages\":\"Article 129636\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004172\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004172","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种描述非线性扩散系统自相似快速反应极限的方法。对于适当的初始数据,在快速反应极限k→∞下,空间偏析导致原始系统的两个分量收敛于自相似极限轮廓f(η)的正、负部分,其中η=xt满足四种常微分系统之一。用射法证明了k→∞极限问题自相似解的存在性,射法关注解正与负区域的自由边界的位置a和- φ (f)在η=a处的导数γ。自由边界的位置使我们直观地了解一种物质如何渗透到另一种物质中,对于特定形式的非线性扩散,我们还研究了给定形式的非线性扩散与自由边界位置之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-similar solutions of fast-reaction limit problems with nonlinear diffusion
In this paper, we present an approach to characterising self-similar fast-reaction limits of systems with nonlinear diffusion. For appropriate initial data, in the fast-reaction limit k, spatial segregation results in the two components of the original systems converging to the positive and negative parts of a self-similar limit profile f(η), where η=xt, that satisfies one of four ordinary differential systems. The existence of these self-similar solutions of the k limit problems is proved by using shooting methods which focus on a, the position of the free boundary which separates the regions where the solution is positive and where it is negative, and γ, the derivative of ϕ(f) at η=a. The position of the free boundary gives us intuition about how one substance penetrates into the other, and for specific forms of nonlinear diffusion, the relationship between the given form of the nonlinear diffusion and the position of the free boundary is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信