基于PBDT/LiFSI/MPPIFSI的锂离子电池单离子导电聚合物电解质(SICPE)膜lfp型阴极的最佳LiFePO4比率和负载

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Luisa Roxana Mandoc , Amalia Maria Soare , Giorgian Cosmin Ungureanu , Violeta-Carolina Niculescu , Mirela Irina Petreanu , Radu Dorin Andrei , Athanasios Tiliakos
{"title":"基于PBDT/LiFSI/MPPIFSI的锂离子电池单离子导电聚合物电解质(SICPE)膜lfp型阴极的最佳LiFePO4比率和负载","authors":"Luisa Roxana Mandoc ,&nbsp;Amalia Maria Soare ,&nbsp;Giorgian Cosmin Ungureanu ,&nbsp;Violeta-Carolina Niculescu ,&nbsp;Mirela Irina Petreanu ,&nbsp;Radu Dorin Andrei ,&nbsp;Athanasios Tiliakos","doi":"10.1016/j.apsadv.2025.100772","DOIUrl":null,"url":null,"abstract":"<div><div>LiFePO<sub>4</sub> composite cathodes based on LFP, carbon black, and PVDF were prepared with different mass percentages and loadings of the active material, and integrated in CR2032 cells using a Single-Ion Conducting Polymer Electrolyte (SICPE) membrane, alternatively known as Solid Molecular Ionic Composite Electrolyte (SMICE), based on a PBDT/LiFSI/MPPIFSI Molecular Ionic Composite (MIC). The assembled Li-ion battery cells were subjected to a series of tests to gauge their performance. The LFP|SMICE cathodes with a compositional ratio of 60 % and a loading of 1.1 mg cm<sup>–2</sup> in active material displayed the optimal performance, reaching 126 mAh g<sup>–1</sup> at the C/10 current rate, and 93 mAh g<sup>–1</sup> at the 1C current rate, presenting a capacity retention of 90.77 % by the end of the 555th cycle. Our work highlights the potential of combining LFP-type cathodes with single-ion conducting polymer electrolytes to increase the stability and performance of lithium-ion batteries while mitigating the safety issues associated with non-solid electrolytes, and determines the loadings and compositional ratios of LFP in the composite cathodes that present the optimal results in conjunction with SMICE.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100772"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal LiFePO4 ratios and loadings for LFP-type cathodes with Single-Ion Conducting Polymer Electrolyte (SICPE) membranes based on PBDT/LiFSI/MPPIFSI for lithium-ion batteries+\",\"authors\":\"Luisa Roxana Mandoc ,&nbsp;Amalia Maria Soare ,&nbsp;Giorgian Cosmin Ungureanu ,&nbsp;Violeta-Carolina Niculescu ,&nbsp;Mirela Irina Petreanu ,&nbsp;Radu Dorin Andrei ,&nbsp;Athanasios Tiliakos\",\"doi\":\"10.1016/j.apsadv.2025.100772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiFePO<sub>4</sub> composite cathodes based on LFP, carbon black, and PVDF were prepared with different mass percentages and loadings of the active material, and integrated in CR2032 cells using a Single-Ion Conducting Polymer Electrolyte (SICPE) membrane, alternatively known as Solid Molecular Ionic Composite Electrolyte (SMICE), based on a PBDT/LiFSI/MPPIFSI Molecular Ionic Composite (MIC). The assembled Li-ion battery cells were subjected to a series of tests to gauge their performance. The LFP|SMICE cathodes with a compositional ratio of 60 % and a loading of 1.1 mg cm<sup>–2</sup> in active material displayed the optimal performance, reaching 126 mAh g<sup>–1</sup> at the C/10 current rate, and 93 mAh g<sup>–1</sup> at the 1C current rate, presenting a capacity retention of 90.77 % by the end of the 555th cycle. Our work highlights the potential of combining LFP-type cathodes with single-ion conducting polymer electrolytes to increase the stability and performance of lithium-ion batteries while mitigating the safety issues associated with non-solid electrolytes, and determines the loadings and compositional ratios of LFP in the composite cathodes that present the optimal results in conjunction with SMICE.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"27 \",\"pages\":\"Article 100772\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925000807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用PBDT/LiFSI/MPPIFSI分子离子复合材料(MIC)制备了基于LFP、炭黑和PVDF的LiFePO4复合阴极,并使用单离子导电聚合物电解质(SICPE)膜(也称为固体分子离子复合电解质(SMICE))集成在CR2032电池中。组装好的锂离子电池进行了一系列测试,以评估其性能。当活性材料负载量为1.1 mg cm-2时,LFP|SMICE阴极表现出最佳性能,在C/10倍率下达到126 mAh g-1,在1C倍率下达到93 mAh g-1,在555次循环结束时容量保持率为90.77%。我们的工作强调了LFP型阴极与单离子导电聚合物电解质结合的潜力,可以提高锂离子电池的稳定性和性能,同时减轻与非固体电解质相关的安全问题,并确定了LFP在复合阴极中的负载和组成比例,从而与SMICE结合产生最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal LiFePO4 ratios and loadings for LFP-type cathodes with Single-Ion Conducting Polymer Electrolyte (SICPE) membranes based on PBDT/LiFSI/MPPIFSI for lithium-ion batteries+
LiFePO4 composite cathodes based on LFP, carbon black, and PVDF were prepared with different mass percentages and loadings of the active material, and integrated in CR2032 cells using a Single-Ion Conducting Polymer Electrolyte (SICPE) membrane, alternatively known as Solid Molecular Ionic Composite Electrolyte (SMICE), based on a PBDT/LiFSI/MPPIFSI Molecular Ionic Composite (MIC). The assembled Li-ion battery cells were subjected to a series of tests to gauge their performance. The LFP|SMICE cathodes with a compositional ratio of 60 % and a loading of 1.1 mg cm–2 in active material displayed the optimal performance, reaching 126 mAh g–1 at the C/10 current rate, and 93 mAh g–1 at the 1C current rate, presenting a capacity retention of 90.77 % by the end of the 555th cycle. Our work highlights the potential of combining LFP-type cathodes with single-ion conducting polymer electrolytes to increase the stability and performance of lithium-ion batteries while mitigating the safety issues associated with non-solid electrolytes, and determines the loadings and compositional ratios of LFP in the composite cathodes that present the optimal results in conjunction with SMICE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信