Zhiguang Zhang , Ouqiang Wu , Jiahao Ying , Yuxin Jin , Hui Wang , Haijun Tian , Qizhu Chen , Linjie Chen , Chen Tao , Chao Lou , Morgan Jones , Xiangyang Wang , Pooyan Makvandi , Shuying Shen , Bin Li , Aimin Wu
{"title":"糖尿病椎间盘退变的调控:AGEAT/miR-204-5p/Mapk4轴在髓核细胞线粒体功能和凋亡中的作用","authors":"Zhiguang Zhang , Ouqiang Wu , Jiahao Ying , Yuxin Jin , Hui Wang , Haijun Tian , Qizhu Chen , Linjie Chen , Chen Tao , Chao Lou , Morgan Jones , Xiangyang Wang , Pooyan Makvandi , Shuying Shen , Bin Li , Aimin Wu","doi":"10.1016/j.cellsig.2025.111857","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic low back pain associated with intervertebral disc degeneration (IVDD) is significantly aggravated in patients with diabetes mellitus (DM); however, the underlying molecular mechanisms remain unclear. This study explored the role of the long non-coding RNA AGEAT (AGE-associated transcript) in the pathogenesis of DM-associated IVDD. Whole-transcriptome sequencing of rat nucleus pulposus cells (NPCs) treated with advanced glycation end products (AGEs) revealed a time-dependent upregulation of AGEAT. AGEAT overexpression induced NPC apoptosis, mitochondrial dysfunction, and extracellular matrix (ECM) degradation. Mechanistically, RNA fluorescence in situ hybridization localized AGEAT to the cytoplasm, where it acted as a competing endogenous RNA (ceRNA) by directly binding miR-204-5p, thereby relieving repression of its target Mapk4. Silencing AGEAT via siRNA significantly reduced apoptosis, restored mitochondrial function, and preserved ECM integrity. In vivo, intra-discal injection of AAV-sh-AGEAT in diabetic IVDD rats significantly improved disc integrity, as evidenced by a reduction in MRI Pfirrmann grade and histological preservation of NPC density and collagen II content. Collectively, these findings establish AGEAT as a key ceRNA that exacerbates diabetic IVDD via the miR-204-5p/Mapk4 axis, promoting NPC apoptosis, mitochondrial dysfunction, and ECM degradation. Targeting this pathway—through AGEAT silencing or miR-204-5p activation—represents a promising therapeutic strategy for mitigating diabetes-associated disc degeneration. This study reveals the critical role of the AGEAT/miR-204-5p/Mapk4 axis in the progression of DM-associated IVDD, suggesting a potential therapeutic strategy for its treatment.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"133 ","pages":"Article 111857"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of diabetic disc degeneration: The role of AGEAT/miR-204-5p/Mapk4 axis in nucleus pulposus cells' mitochondrial function and apoptosis\",\"authors\":\"Zhiguang Zhang , Ouqiang Wu , Jiahao Ying , Yuxin Jin , Hui Wang , Haijun Tian , Qizhu Chen , Linjie Chen , Chen Tao , Chao Lou , Morgan Jones , Xiangyang Wang , Pooyan Makvandi , Shuying Shen , Bin Li , Aimin Wu\",\"doi\":\"10.1016/j.cellsig.2025.111857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic low back pain associated with intervertebral disc degeneration (IVDD) is significantly aggravated in patients with diabetes mellitus (DM); however, the underlying molecular mechanisms remain unclear. This study explored the role of the long non-coding RNA AGEAT (AGE-associated transcript) in the pathogenesis of DM-associated IVDD. Whole-transcriptome sequencing of rat nucleus pulposus cells (NPCs) treated with advanced glycation end products (AGEs) revealed a time-dependent upregulation of AGEAT. AGEAT overexpression induced NPC apoptosis, mitochondrial dysfunction, and extracellular matrix (ECM) degradation. Mechanistically, RNA fluorescence in situ hybridization localized AGEAT to the cytoplasm, where it acted as a competing endogenous RNA (ceRNA) by directly binding miR-204-5p, thereby relieving repression of its target Mapk4. Silencing AGEAT via siRNA significantly reduced apoptosis, restored mitochondrial function, and preserved ECM integrity. In vivo, intra-discal injection of AAV-sh-AGEAT in diabetic IVDD rats significantly improved disc integrity, as evidenced by a reduction in MRI Pfirrmann grade and histological preservation of NPC density and collagen II content. Collectively, these findings establish AGEAT as a key ceRNA that exacerbates diabetic IVDD via the miR-204-5p/Mapk4 axis, promoting NPC apoptosis, mitochondrial dysfunction, and ECM degradation. Targeting this pathway—through AGEAT silencing or miR-204-5p activation—represents a promising therapeutic strategy for mitigating diabetes-associated disc degeneration. This study reveals the critical role of the AGEAT/miR-204-5p/Mapk4 axis in the progression of DM-associated IVDD, suggesting a potential therapeutic strategy for its treatment.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"133 \",\"pages\":\"Article 111857\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656825002724\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002724","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Regulation of diabetic disc degeneration: The role of AGEAT/miR-204-5p/Mapk4 axis in nucleus pulposus cells' mitochondrial function and apoptosis
Chronic low back pain associated with intervertebral disc degeneration (IVDD) is significantly aggravated in patients with diabetes mellitus (DM); however, the underlying molecular mechanisms remain unclear. This study explored the role of the long non-coding RNA AGEAT (AGE-associated transcript) in the pathogenesis of DM-associated IVDD. Whole-transcriptome sequencing of rat nucleus pulposus cells (NPCs) treated with advanced glycation end products (AGEs) revealed a time-dependent upregulation of AGEAT. AGEAT overexpression induced NPC apoptosis, mitochondrial dysfunction, and extracellular matrix (ECM) degradation. Mechanistically, RNA fluorescence in situ hybridization localized AGEAT to the cytoplasm, where it acted as a competing endogenous RNA (ceRNA) by directly binding miR-204-5p, thereby relieving repression of its target Mapk4. Silencing AGEAT via siRNA significantly reduced apoptosis, restored mitochondrial function, and preserved ECM integrity. In vivo, intra-discal injection of AAV-sh-AGEAT in diabetic IVDD rats significantly improved disc integrity, as evidenced by a reduction in MRI Pfirrmann grade and histological preservation of NPC density and collagen II content. Collectively, these findings establish AGEAT as a key ceRNA that exacerbates diabetic IVDD via the miR-204-5p/Mapk4 axis, promoting NPC apoptosis, mitochondrial dysfunction, and ECM degradation. Targeting this pathway—through AGEAT silencing or miR-204-5p activation—represents a promising therapeutic strategy for mitigating diabetes-associated disc degeneration. This study reveals the critical role of the AGEAT/miR-204-5p/Mapk4 axis in the progression of DM-associated IVDD, suggesting a potential therapeutic strategy for its treatment.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.