Jiaming Tian, Bo Ren, Yiran Duan, Biao Li, Yueshe Wang
{"title":"聚光太阳能电站不同工况下熔盐蒸汽发生系统的热水力性能","authors":"Jiaming Tian, Bo Ren, Yiran Duan, Biao Li, Yueshe Wang","doi":"10.1016/j.csite.2025.106340","DOIUrl":null,"url":null,"abstract":"<div><div>To conduct the thermal transport characteristics and operational stability of the steam generation system (SGS) under partial load conditions in concentrating solar power (CSP), a real-scale shell-and-tube steam generator hydrodynamics predictive model is developed. This model integrates lumped parameter methods with the finite volume method to account for heat transfer and phase change. Additionally, in accordance with the prevailing water circulation mode in the CSP plant, a typical model of the natural circulation system is established, while optimal stable operating points of the maximum circulation mass flow rate under varying operating conditions are determined. The results indicate that the inherent stability of the generator strongly lies in the dynamic compromise between its thermodynamic and hydrodynamic characteristics. Under high load conditions, the natural circulation mode demonstrates excellent flow stability. Operating at lower operating pressures results in greater circulation flow and a heightened sensitivity to phase changes. Under system pressures of 13.76, 11.08, 8.39, and 6.71 MPa, the recommended circulation ratios are determined to be 5.38, 7.86, 11.95, and 16.07, respectively. Furthermore, the stability of the circulation curve is optimized by adjusting the structural dimensions of the steam generator. The sensitivity to evaporation capacity and heat exchanger effectiveness is assessed.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"72 ","pages":"Article 106340"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and hydraulic performance of molten salt steam generation system under varying operating conditions in concentrating solar power plants\",\"authors\":\"Jiaming Tian, Bo Ren, Yiran Duan, Biao Li, Yueshe Wang\",\"doi\":\"10.1016/j.csite.2025.106340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To conduct the thermal transport characteristics and operational stability of the steam generation system (SGS) under partial load conditions in concentrating solar power (CSP), a real-scale shell-and-tube steam generator hydrodynamics predictive model is developed. This model integrates lumped parameter methods with the finite volume method to account for heat transfer and phase change. Additionally, in accordance with the prevailing water circulation mode in the CSP plant, a typical model of the natural circulation system is established, while optimal stable operating points of the maximum circulation mass flow rate under varying operating conditions are determined. The results indicate that the inherent stability of the generator strongly lies in the dynamic compromise between its thermodynamic and hydrodynamic characteristics. Under high load conditions, the natural circulation mode demonstrates excellent flow stability. Operating at lower operating pressures results in greater circulation flow and a heightened sensitivity to phase changes. Under system pressures of 13.76, 11.08, 8.39, and 6.71 MPa, the recommended circulation ratios are determined to be 5.38, 7.86, 11.95, and 16.07, respectively. Furthermore, the stability of the circulation curve is optimized by adjusting the structural dimensions of the steam generator. The sensitivity to evaporation capacity and heat exchanger effectiveness is assessed.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"72 \",\"pages\":\"Article 106340\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25006008\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25006008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal and hydraulic performance of molten salt steam generation system under varying operating conditions in concentrating solar power plants
To conduct the thermal transport characteristics and operational stability of the steam generation system (SGS) under partial load conditions in concentrating solar power (CSP), a real-scale shell-and-tube steam generator hydrodynamics predictive model is developed. This model integrates lumped parameter methods with the finite volume method to account for heat transfer and phase change. Additionally, in accordance with the prevailing water circulation mode in the CSP plant, a typical model of the natural circulation system is established, while optimal stable operating points of the maximum circulation mass flow rate under varying operating conditions are determined. The results indicate that the inherent stability of the generator strongly lies in the dynamic compromise between its thermodynamic and hydrodynamic characteristics. Under high load conditions, the natural circulation mode demonstrates excellent flow stability. Operating at lower operating pressures results in greater circulation flow and a heightened sensitivity to phase changes. Under system pressures of 13.76, 11.08, 8.39, and 6.71 MPa, the recommended circulation ratios are determined to be 5.38, 7.86, 11.95, and 16.07, respectively. Furthermore, the stability of the circulation curve is optimized by adjusting the structural dimensions of the steam generator. The sensitivity to evaporation capacity and heat exchanger effectiveness is assessed.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.