{"title":"随机矩阵的直径:贝叶斯网络灵敏度分析的一种新测度","authors":"Manuele Leonelli , Jim Q. Smith","doi":"10.1016/j.ijar.2025.109470","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian networks are one of the most widely used classes of probabilistic models for risk management and decision support because of their interpretability and flexibility in including heterogeneous pieces of information. In any applied modelling, it is critical to assess how robust the inferences on certain target variables are to changes in the model. In Bayesian networks, these analyses fall under the umbrella of sensitivity analysis, which is most commonly carried out by quantifying dissimilarities using Kullback-Leibler information measures. We argue that robustness methods based instead on the total variation distance provide simple and more valuable bounds on robustness to misspecification, which are both formally justifiable and transparent. We introduce a novel measure of dependence in conditional probability tables called the <em>diameter</em> to derive such bounds. This measure quantifies the strength of dependence between a variable and its parents. Furthermore, the diameter is a versatile measure that can be applied to a wide range of sensitivity analysis tasks. It is particularly useful for quantifying edge strength, assessing influence between pairs of variables, detecting asymmetric dependence, and amalgamating levels of variables. This flexibility makes the diameter an invaluable tool for enhancing the robustness and interpretability of Bayesian network models in applied risk management and decision support.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"185 ","pages":"Article 109470"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks\",\"authors\":\"Manuele Leonelli , Jim Q. Smith\",\"doi\":\"10.1016/j.ijar.2025.109470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bayesian networks are one of the most widely used classes of probabilistic models for risk management and decision support because of their interpretability and flexibility in including heterogeneous pieces of information. In any applied modelling, it is critical to assess how robust the inferences on certain target variables are to changes in the model. In Bayesian networks, these analyses fall under the umbrella of sensitivity analysis, which is most commonly carried out by quantifying dissimilarities using Kullback-Leibler information measures. We argue that robustness methods based instead on the total variation distance provide simple and more valuable bounds on robustness to misspecification, which are both formally justifiable and transparent. We introduce a novel measure of dependence in conditional probability tables called the <em>diameter</em> to derive such bounds. This measure quantifies the strength of dependence between a variable and its parents. Furthermore, the diameter is a versatile measure that can be applied to a wide range of sensitivity analysis tasks. It is particularly useful for quantifying edge strength, assessing influence between pairs of variables, detecting asymmetric dependence, and amalgamating levels of variables. This flexibility makes the diameter an invaluable tool for enhancing the robustness and interpretability of Bayesian network models in applied risk management and decision support.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"185 \",\"pages\":\"Article 109470\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001112\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001112","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks
Bayesian networks are one of the most widely used classes of probabilistic models for risk management and decision support because of their interpretability and flexibility in including heterogeneous pieces of information. In any applied modelling, it is critical to assess how robust the inferences on certain target variables are to changes in the model. In Bayesian networks, these analyses fall under the umbrella of sensitivity analysis, which is most commonly carried out by quantifying dissimilarities using Kullback-Leibler information measures. We argue that robustness methods based instead on the total variation distance provide simple and more valuable bounds on robustness to misspecification, which are both formally justifiable and transparent. We introduce a novel measure of dependence in conditional probability tables called the diameter to derive such bounds. This measure quantifies the strength of dependence between a variable and its parents. Furthermore, the diameter is a versatile measure that can be applied to a wide range of sensitivity analysis tasks. It is particularly useful for quantifying edge strength, assessing influence between pairs of variables, detecting asymmetric dependence, and amalgamating levels of variables. This flexibility makes the diameter an invaluable tool for enhancing the robustness and interpretability of Bayesian network models in applied risk management and decision support.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.