{"title":"具有Golazo惩罚的潜在高斯和h<s:1> sler - reiss图形模型","authors":"Ignacio Echave-Sustaeta Rodríguez, Frank Röttger","doi":"10.1016/j.ijar.2025.109468","DOIUrl":null,"url":null,"abstract":"<div><div>The existence of latent variables in practical problems is common, for example when some variables are difficult or expensive to measure, or simply unknown. When latent variables are unaccounted for, structure learning for Gaussian graphical models can be blurred by additional correlation between the observed variables that is incurred by the latent variables. A standard approach for this problem is a latent version of the graphical lasso that splits the inverse covariance matrix into a sparse and a low-rank part that are penalized separately. This approach has recently been extended successfully to Hüsler–Reiss graphical models, which can be considered as an analogue of Gaussian graphical models in extreme value statistics. In this paper we propose a generalization of structure learning for Gaussian and Hüsler–Reiss graphical models via the flexible Golazo penalty. This allows us to introduce latent versions of for example the adaptive lasso, positive dependence constraints or predetermined sparsity patterns, and combinations of those. We develop algorithms for both latent graphical models with the Golazo penalty and demonstrate it on simulated and real data.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"185 ","pages":"Article 109468"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Gaussian and Hüsler–Reiss graphical models with Golazo penalty\",\"authors\":\"Ignacio Echave-Sustaeta Rodríguez, Frank Röttger\",\"doi\":\"10.1016/j.ijar.2025.109468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existence of latent variables in practical problems is common, for example when some variables are difficult or expensive to measure, or simply unknown. When latent variables are unaccounted for, structure learning for Gaussian graphical models can be blurred by additional correlation between the observed variables that is incurred by the latent variables. A standard approach for this problem is a latent version of the graphical lasso that splits the inverse covariance matrix into a sparse and a low-rank part that are penalized separately. This approach has recently been extended successfully to Hüsler–Reiss graphical models, which can be considered as an analogue of Gaussian graphical models in extreme value statistics. In this paper we propose a generalization of structure learning for Gaussian and Hüsler–Reiss graphical models via the flexible Golazo penalty. This allows us to introduce latent versions of for example the adaptive lasso, positive dependence constraints or predetermined sparsity patterns, and combinations of those. We develop algorithms for both latent graphical models with the Golazo penalty and demonstrate it on simulated and real data.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"185 \",\"pages\":\"Article 109468\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001094\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001094","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Latent Gaussian and Hüsler–Reiss graphical models with Golazo penalty
The existence of latent variables in practical problems is common, for example when some variables are difficult or expensive to measure, or simply unknown. When latent variables are unaccounted for, structure learning for Gaussian graphical models can be blurred by additional correlation between the observed variables that is incurred by the latent variables. A standard approach for this problem is a latent version of the graphical lasso that splits the inverse covariance matrix into a sparse and a low-rank part that are penalized separately. This approach has recently been extended successfully to Hüsler–Reiss graphical models, which can be considered as an analogue of Gaussian graphical models in extreme value statistics. In this paper we propose a generalization of structure learning for Gaussian and Hüsler–Reiss graphical models via the flexible Golazo penalty. This allows us to introduce latent versions of for example the adaptive lasso, positive dependence constraints or predetermined sparsity patterns, and combinations of those. We develop algorithms for both latent graphical models with the Golazo penalty and demonstrate it on simulated and real data.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.