{"title":"新一代纳米技术集成生物表面活性剂:可持续和现代农业的生物农药开发创新","authors":"Mitesh Patel , Malvi Surti , Komal Janiyani , Mohd Adnan","doi":"10.1016/j.cis.2025.103555","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global demand for eco-friendly agricultural practices necessitates the development of innovative pest management solutions, effectively addressing the environmental and ecological issues associated with traditional chemical pesticides, such as pest resistance, environmental contamination, and non-target organism toxicity. Biosurfactants, biologically derived amphiphilic molecules from microbial and plant sources, offer distinct advantages including biodegradability, excellent surface-active properties, and inherent antimicrobial efficacy, making them as promising candidates for sustainable pest management and control. Concurrently, nanotechnology introduces innovative delivery mechanisms, enhancing biopesticide stability, solubility, and targeted application, significantly minimizing off-target impact and environmental footprint. This review emphasizes recent breakthroughs in integrating biosurfactants with nanotechnological strategies to produce advanced biopesticides. Key advancements include the role of biosurfactants to increase the bioavailability and effectiveness of active ingredients and utilizing nanopesticides for targeted pest control with improved precision. Combining the unique amphiphilic properties of biosurfactants and the precise targeting capabilities of nanocarriers presents substantial improvements in pest management efficacy and aligns closely with Integrated Pest Management (IPM) principles. Despite these promising developments, significant knowledge gaps remain, including understanding the interactions between biosurfactants, nanomaterials, and the environmental matrices, as well as assessing long-term ecological impacts and safety profiles associated with nanopesticide usage. This article outlines critical research areas requiring further exploration to optimize biosurfactant-nanotechnology systems for large-scale agricultural deployment. Addressing these challenges will facilitate broader adoption, ensuring sustainable pest control practices that significantly contribute to global food security and environmental preservation. Integrating biosurfactants with nanotechnology represents a transformative approach in agricultural pest management, offering substantial potential to revolutionize sustainable agriculture through effective, environment-friendly solutions.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"343 ","pages":"Article 103555"},"PeriodicalIF":19.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation nanotechnology-integrated biosurfactants: Innovations in biopesticide development for sustainable and modern agriculture\",\"authors\":\"Mitesh Patel , Malvi Surti , Komal Janiyani , Mohd Adnan\",\"doi\":\"10.1016/j.cis.2025.103555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing global demand for eco-friendly agricultural practices necessitates the development of innovative pest management solutions, effectively addressing the environmental and ecological issues associated with traditional chemical pesticides, such as pest resistance, environmental contamination, and non-target organism toxicity. Biosurfactants, biologically derived amphiphilic molecules from microbial and plant sources, offer distinct advantages including biodegradability, excellent surface-active properties, and inherent antimicrobial efficacy, making them as promising candidates for sustainable pest management and control. Concurrently, nanotechnology introduces innovative delivery mechanisms, enhancing biopesticide stability, solubility, and targeted application, significantly minimizing off-target impact and environmental footprint. This review emphasizes recent breakthroughs in integrating biosurfactants with nanotechnological strategies to produce advanced biopesticides. Key advancements include the role of biosurfactants to increase the bioavailability and effectiveness of active ingredients and utilizing nanopesticides for targeted pest control with improved precision. Combining the unique amphiphilic properties of biosurfactants and the precise targeting capabilities of nanocarriers presents substantial improvements in pest management efficacy and aligns closely with Integrated Pest Management (IPM) principles. Despite these promising developments, significant knowledge gaps remain, including understanding the interactions between biosurfactants, nanomaterials, and the environmental matrices, as well as assessing long-term ecological impacts and safety profiles associated with nanopesticide usage. This article outlines critical research areas requiring further exploration to optimize biosurfactant-nanotechnology systems for large-scale agricultural deployment. Addressing these challenges will facilitate broader adoption, ensuring sustainable pest control practices that significantly contribute to global food security and environmental preservation. Integrating biosurfactants with nanotechnology represents a transformative approach in agricultural pest management, offering substantial potential to revolutionize sustainable agriculture through effective, environment-friendly solutions.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"343 \",\"pages\":\"Article 103555\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625001666\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001666","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Next-generation nanotechnology-integrated biosurfactants: Innovations in biopesticide development for sustainable and modern agriculture
The increasing global demand for eco-friendly agricultural practices necessitates the development of innovative pest management solutions, effectively addressing the environmental and ecological issues associated with traditional chemical pesticides, such as pest resistance, environmental contamination, and non-target organism toxicity. Biosurfactants, biologically derived amphiphilic molecules from microbial and plant sources, offer distinct advantages including biodegradability, excellent surface-active properties, and inherent antimicrobial efficacy, making them as promising candidates for sustainable pest management and control. Concurrently, nanotechnology introduces innovative delivery mechanisms, enhancing biopesticide stability, solubility, and targeted application, significantly minimizing off-target impact and environmental footprint. This review emphasizes recent breakthroughs in integrating biosurfactants with nanotechnological strategies to produce advanced biopesticides. Key advancements include the role of biosurfactants to increase the bioavailability and effectiveness of active ingredients and utilizing nanopesticides for targeted pest control with improved precision. Combining the unique amphiphilic properties of biosurfactants and the precise targeting capabilities of nanocarriers presents substantial improvements in pest management efficacy and aligns closely with Integrated Pest Management (IPM) principles. Despite these promising developments, significant knowledge gaps remain, including understanding the interactions between biosurfactants, nanomaterials, and the environmental matrices, as well as assessing long-term ecological impacts and safety profiles associated with nanopesticide usage. This article outlines critical research areas requiring further exploration to optimize biosurfactant-nanotechnology systems for large-scale agricultural deployment. Addressing these challenges will facilitate broader adoption, ensuring sustainable pest control practices that significantly contribute to global food security and environmental preservation. Integrating biosurfactants with nanotechnology represents a transformative approach in agricultural pest management, offering substantial potential to revolutionize sustainable agriculture through effective, environment-friendly solutions.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.