Pengde Lai , Chao Lv , Lv Zhou , Shengxiong Yang , Jiao Xu , Qiulin Dong , Meilin He
{"title":"改进轻量级DeepLabV3+,用于从高分辨率无人机图像中提取裸岩","authors":"Pengde Lai , Chao Lv , Lv Zhou , Shengxiong Yang , Jiao Xu , Qiulin Dong , Meilin He","doi":"10.1016/j.ecoinf.2025.103204","DOIUrl":null,"url":null,"abstract":"<div><div>Bare rock information extraction in karst regions is crucial for geological hazard monitoring and ecological assessment. However, in sparsely vegetated areas, bare rock exhibits similar spectral characteristics to surrounding land cover, and the boundaries are often indistinct, making it challenging for traditional classification methods to distinguish these transitional zones accurately. To address these challenges, this study proposes a bare rock extraction method based on an improved lightweight DeepLabV3+ model. MobileNetV2 is used as the backbone network, and the Channel Attention Module (CAM) and Spatial Attention Module (SAM) are introduced to enhance feature extraction capability. Results show the following: (1) When MobileNetV2 is used as the backbone of DeepLabV3+, the Accuracy, F1 score, and MIoU reach 97.39 %, 78.91 %, and 82.11 %, respectively, outperforming VGG16, Xception, SqueezeNet, and traditional segmentation models. (2) Applying the lightweight DeepLabV3+ model to bare rock identification in orthophoto imagery of the study area results in a bare rock rate error of approximately 5 %, demonstrating the practical applicability of the model. (3) After the introduction of the attention mechanism, the model's Recall, F1 score, and MIoU increased by 14.00 %, 8.37 %, and 5.62 %, respectively, remarkably enhancing identification completeness and boundary accuracy. Meanwhile, the improved model had a parameter count of 6.98 M and a computational complexity of 7.24G, achieving enhanced accuracy while maintaining computational efficiency. The research results can provide accurate bare rock information to support geological hazard monitoring and early warning, and offer new technical solutions for ecological restoration and risk assessment. (Data sets and code links: <span><span>https://figshare.com/articles/dataset/Bare_rock_dataset/28143443?file=53186633</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"89 ","pages":"Article 103204"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved lightweight DeepLabV3+ for bare rock extraction from high-resolution UAV imagery\",\"authors\":\"Pengde Lai , Chao Lv , Lv Zhou , Shengxiong Yang , Jiao Xu , Qiulin Dong , Meilin He\",\"doi\":\"10.1016/j.ecoinf.2025.103204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bare rock information extraction in karst regions is crucial for geological hazard monitoring and ecological assessment. However, in sparsely vegetated areas, bare rock exhibits similar spectral characteristics to surrounding land cover, and the boundaries are often indistinct, making it challenging for traditional classification methods to distinguish these transitional zones accurately. To address these challenges, this study proposes a bare rock extraction method based on an improved lightweight DeepLabV3+ model. MobileNetV2 is used as the backbone network, and the Channel Attention Module (CAM) and Spatial Attention Module (SAM) are introduced to enhance feature extraction capability. Results show the following: (1) When MobileNetV2 is used as the backbone of DeepLabV3+, the Accuracy, F1 score, and MIoU reach 97.39 %, 78.91 %, and 82.11 %, respectively, outperforming VGG16, Xception, SqueezeNet, and traditional segmentation models. (2) Applying the lightweight DeepLabV3+ model to bare rock identification in orthophoto imagery of the study area results in a bare rock rate error of approximately 5 %, demonstrating the practical applicability of the model. (3) After the introduction of the attention mechanism, the model's Recall, F1 score, and MIoU increased by 14.00 %, 8.37 %, and 5.62 %, respectively, remarkably enhancing identification completeness and boundary accuracy. Meanwhile, the improved model had a parameter count of 6.98 M and a computational complexity of 7.24G, achieving enhanced accuracy while maintaining computational efficiency. The research results can provide accurate bare rock information to support geological hazard monitoring and early warning, and offer new technical solutions for ecological restoration and risk assessment. (Data sets and code links: <span><span>https://figshare.com/articles/dataset/Bare_rock_dataset/28143443?file=53186633</span><svg><path></path></svg></span>).</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"89 \",\"pages\":\"Article 103204\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954125002134\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125002134","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Improved lightweight DeepLabV3+ for bare rock extraction from high-resolution UAV imagery
Bare rock information extraction in karst regions is crucial for geological hazard monitoring and ecological assessment. However, in sparsely vegetated areas, bare rock exhibits similar spectral characteristics to surrounding land cover, and the boundaries are often indistinct, making it challenging for traditional classification methods to distinguish these transitional zones accurately. To address these challenges, this study proposes a bare rock extraction method based on an improved lightweight DeepLabV3+ model. MobileNetV2 is used as the backbone network, and the Channel Attention Module (CAM) and Spatial Attention Module (SAM) are introduced to enhance feature extraction capability. Results show the following: (1) When MobileNetV2 is used as the backbone of DeepLabV3+, the Accuracy, F1 score, and MIoU reach 97.39 %, 78.91 %, and 82.11 %, respectively, outperforming VGG16, Xception, SqueezeNet, and traditional segmentation models. (2) Applying the lightweight DeepLabV3+ model to bare rock identification in orthophoto imagery of the study area results in a bare rock rate error of approximately 5 %, demonstrating the practical applicability of the model. (3) After the introduction of the attention mechanism, the model's Recall, F1 score, and MIoU increased by 14.00 %, 8.37 %, and 5.62 %, respectively, remarkably enhancing identification completeness and boundary accuracy. Meanwhile, the improved model had a parameter count of 6.98 M and a computational complexity of 7.24G, achieving enhanced accuracy while maintaining computational efficiency. The research results can provide accurate bare rock information to support geological hazard monitoring and early warning, and offer new technical solutions for ecological restoration and risk assessment. (Data sets and code links: https://figshare.com/articles/dataset/Bare_rock_dataset/28143443?file=53186633).
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.