Kornelia Hyjek , Klaudia Dymek , Grzegorz Kurowski , Anna Boguszewska-Czubara , Sylwia Wnorowska , Anna Pajdak , Łukasz Kuterasiński , Witold Piskorz , Anna Gancarczyk , Marzena Iwaniszyn , Arturo Cubi , Maryna Khalavka , Przemysław J. Jodłowski
{"title":"金属有机骨架强化肺癌治疗","authors":"Kornelia Hyjek , Klaudia Dymek , Grzegorz Kurowski , Anna Boguszewska-Czubara , Sylwia Wnorowska , Anna Pajdak , Łukasz Kuterasiński , Witold Piskorz , Anna Gancarczyk , Marzena Iwaniszyn , Arturo Cubi , Maryna Khalavka , Przemysław J. Jodłowski","doi":"10.1016/j.micromeso.2025.113665","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates the potential use of Zr-based metal–organic frameworks as carriers of gradual-release chemotherapeutics for lung cancer therapy. The therapeutic efficacy of 5-fluorouracil (5-FU) was compared to that of <span><math><mi>α</mi></math></span>-cyano-4-hydroxycinnamic acid (<span><math><mi>α</mi></math></span>-CHC). The model group of UiO-66 varied the number of defects and the presence of additional amino groups, and their 5-FU and <span><math><mi>α</mi></math></span>-CHC@UiO-66 composites were examined. Their performance in drug delivery was evaluated through dry powder inhalers. The drug release kinetics from prepared composites were studied in different media, including SBF and SLF fluids. The effects of the ionic environment, the presence of an amino group on the surface of the MOF structure, and the tendency of the introduced molecule to protonate were observed. The sorption mechanisms were corroborated with DFT modeling, showing the profound impact of the –NH<sub>2</sub> groups on the adsorption energetics. For UiO-66, the mutual orientation of the aromatic rings in the molecule and the MOF linker indicate the presence of the <span><math><mi>π</mi></math></span>-<span><math><mi>π</mi></math></span> stacking. The accumulated covalent bond order between the adsorbate molecule and the MOF framework also supports the nature of the adsorption. The in vitro and in vivo studies emphasize both the safety and efficacy of the presented therapy.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"395 ","pages":"Article 113665"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing lung cancer treatment with metal–organic frameworks\",\"authors\":\"Kornelia Hyjek , Klaudia Dymek , Grzegorz Kurowski , Anna Boguszewska-Czubara , Sylwia Wnorowska , Anna Pajdak , Łukasz Kuterasiński , Witold Piskorz , Anna Gancarczyk , Marzena Iwaniszyn , Arturo Cubi , Maryna Khalavka , Przemysław J. Jodłowski\",\"doi\":\"10.1016/j.micromeso.2025.113665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study demonstrates the potential use of Zr-based metal–organic frameworks as carriers of gradual-release chemotherapeutics for lung cancer therapy. The therapeutic efficacy of 5-fluorouracil (5-FU) was compared to that of <span><math><mi>α</mi></math></span>-cyano-4-hydroxycinnamic acid (<span><math><mi>α</mi></math></span>-CHC). The model group of UiO-66 varied the number of defects and the presence of additional amino groups, and their 5-FU and <span><math><mi>α</mi></math></span>-CHC@UiO-66 composites were examined. Their performance in drug delivery was evaluated through dry powder inhalers. The drug release kinetics from prepared composites were studied in different media, including SBF and SLF fluids. The effects of the ionic environment, the presence of an amino group on the surface of the MOF structure, and the tendency of the introduced molecule to protonate were observed. The sorption mechanisms were corroborated with DFT modeling, showing the profound impact of the –NH<sub>2</sub> groups on the adsorption energetics. For UiO-66, the mutual orientation of the aromatic rings in the molecule and the MOF linker indicate the presence of the <span><math><mi>π</mi></math></span>-<span><math><mi>π</mi></math></span> stacking. The accumulated covalent bond order between the adsorbate molecule and the MOF framework also supports the nature of the adsorption. The in vitro and in vivo studies emphasize both the safety and efficacy of the presented therapy.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"395 \",\"pages\":\"Article 113665\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125001799\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001799","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancing lung cancer treatment with metal–organic frameworks
This study demonstrates the potential use of Zr-based metal–organic frameworks as carriers of gradual-release chemotherapeutics for lung cancer therapy. The therapeutic efficacy of 5-fluorouracil (5-FU) was compared to that of -cyano-4-hydroxycinnamic acid (-CHC). The model group of UiO-66 varied the number of defects and the presence of additional amino groups, and their 5-FU and -CHC@UiO-66 composites were examined. Their performance in drug delivery was evaluated through dry powder inhalers. The drug release kinetics from prepared composites were studied in different media, including SBF and SLF fluids. The effects of the ionic environment, the presence of an amino group on the surface of the MOF structure, and the tendency of the introduced molecule to protonate were observed. The sorption mechanisms were corroborated with DFT modeling, showing the profound impact of the –NH2 groups on the adsorption energetics. For UiO-66, the mutual orientation of the aromatic rings in the molecule and the MOF linker indicate the presence of the - stacking. The accumulated covalent bond order between the adsorbate molecule and the MOF framework also supports the nature of the adsorption. The in vitro and in vivo studies emphasize both the safety and efficacy of the presented therapy.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.