利用机器学习揭示非均相共晶盐的结构和热物理性质

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Wenguang Zhang, Heqing Tian, Tianyu Liu
{"title":"利用机器学习揭示非均相共晶盐的结构和热物理性质","authors":"Wenguang Zhang,&nbsp;Heqing Tian,&nbsp;Tianyu Liu","doi":"10.1016/j.susmat.2025.e01451","DOIUrl":null,"url":null,"abstract":"<div><div>Molten salts are an excellent high temperature phase change thermal storage material with high heat storage density. Machine learning (ML) methods with deep potential have been recognized to have tremendous potential application advantages in predicting the thermal properties of molten salt. Herein, we employ the Deep Potential GENerator (DP-GEN) active learning approach to construct and evaluate the potential function of Na<sub>2</sub>CO<sub>3</sub>-NaCl heterogeneous eutectic salt, and the thermophysical properties and structures of eutectic salt are comprehensively predicted and analyzed. Density and radial distribution function (RDF) are used to validate the accuracy of the simulated structure and properties, with the density simulation results showing an error of merely 2.54 % compared to experimental data. DPMD achieves a level of accuracy comparable to AIMD in simulating melt structure, with an error of just 0.92 %. Na ions and O ions primarily form two types of tetrahedral structures within the molten salt system. CO<sub>3</sub><sup>2−</sup> exhibits a regular triangular structure, with C<img>O bonds oscillating in a plane centered on C. As the temperature increases from 973 K to 1173 K, the thermal conductivity decreases from 0.564 W/(m·K) to 0.559 W/(m·K), the viscosity decreases from 3.454 mPa·s to 1.978 mPa·s, a trend opposite to that of the self-diffusion coefficient (<em>D</em>). Change in viscosity is attributed to alterations in interparticle interactions, distances and coordination relationships. This work provide a new perspective to use DP-GEN active ML strategy to precisely predict structure and thermal property of heterogeneous molten salt systems.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01451"},"PeriodicalIF":8.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the structure and thermophysical property of heterogeneous eutectic salt by machine learning potential for solar thermal energy storage\",\"authors\":\"Wenguang Zhang,&nbsp;Heqing Tian,&nbsp;Tianyu Liu\",\"doi\":\"10.1016/j.susmat.2025.e01451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molten salts are an excellent high temperature phase change thermal storage material with high heat storage density. Machine learning (ML) methods with deep potential have been recognized to have tremendous potential application advantages in predicting the thermal properties of molten salt. Herein, we employ the Deep Potential GENerator (DP-GEN) active learning approach to construct and evaluate the potential function of Na<sub>2</sub>CO<sub>3</sub>-NaCl heterogeneous eutectic salt, and the thermophysical properties and structures of eutectic salt are comprehensively predicted and analyzed. Density and radial distribution function (RDF) are used to validate the accuracy of the simulated structure and properties, with the density simulation results showing an error of merely 2.54 % compared to experimental data. DPMD achieves a level of accuracy comparable to AIMD in simulating melt structure, with an error of just 0.92 %. Na ions and O ions primarily form two types of tetrahedral structures within the molten salt system. CO<sub>3</sub><sup>2−</sup> exhibits a regular triangular structure, with C<img>O bonds oscillating in a plane centered on C. As the temperature increases from 973 K to 1173 K, the thermal conductivity decreases from 0.564 W/(m·K) to 0.559 W/(m·K), the viscosity decreases from 3.454 mPa·s to 1.978 mPa·s, a trend opposite to that of the self-diffusion coefficient (<em>D</em>). Change in viscosity is attributed to alterations in interparticle interactions, distances and coordination relationships. This work provide a new perspective to use DP-GEN active ML strategy to precisely predict structure and thermal property of heterogeneous molten salt systems.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01451\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725002192\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725002192","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

熔盐具有较高的储热密度,是一种优良的高温相变储热材料。机器学习方法在预测熔盐热性能方面具有巨大的潜在应用优势。本文采用Deep Potential GENerator (DP-GEN)主动学习方法构建和评价了Na2CO3-NaCl非均相共晶盐的势函数,对共晶盐的热物理性质和结构进行了全面预测和分析。利用密度和径向分布函数(RDF)验证了模拟结构和性能的准确性,密度模拟结果与实验数据相比误差仅为2.54%。DPMD在模拟熔体结构方面达到了与AIMD相当的精度水平,误差仅为0.92%。钠离子和氧离子在熔盐体系中主要形成两种类型的四面体结构。随着温度从973 K升高到1173 K, CO32−的导热系数从0.564 W/(m·K)下降到0.559 W/(m·K),粘度从3.454 mPa·s下降到1.978 mPa·s,与自扩散系数(D)的变化趋势相反。粘度的变化归因于粒子间相互作用、距离和配位关系的改变。本工作为利用DP-GEN主动ML策略精确预测非均相熔盐体系的结构和热性能提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the structure and thermophysical property of heterogeneous eutectic salt by machine learning potential for solar thermal energy storage
Molten salts are an excellent high temperature phase change thermal storage material with high heat storage density. Machine learning (ML) methods with deep potential have been recognized to have tremendous potential application advantages in predicting the thermal properties of molten salt. Herein, we employ the Deep Potential GENerator (DP-GEN) active learning approach to construct and evaluate the potential function of Na2CO3-NaCl heterogeneous eutectic salt, and the thermophysical properties and structures of eutectic salt are comprehensively predicted and analyzed. Density and radial distribution function (RDF) are used to validate the accuracy of the simulated structure and properties, with the density simulation results showing an error of merely 2.54 % compared to experimental data. DPMD achieves a level of accuracy comparable to AIMD in simulating melt structure, with an error of just 0.92 %. Na ions and O ions primarily form two types of tetrahedral structures within the molten salt system. CO32− exhibits a regular triangular structure, with CO bonds oscillating in a plane centered on C. As the temperature increases from 973 K to 1173 K, the thermal conductivity decreases from 0.564 W/(m·K) to 0.559 W/(m·K), the viscosity decreases from 3.454 mPa·s to 1.978 mPa·s, a trend opposite to that of the self-diffusion coefficient (D). Change in viscosity is attributed to alterations in interparticle interactions, distances and coordination relationships. This work provide a new perspective to use DP-GEN active ML strategy to precisely predict structure and thermal property of heterogeneous molten salt systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信