Mohammad Bagher Askari , Sadegh Azizi , Mohammad Taghi Tourchi Moghadam , Parisa Salarizadeh
{"title":"MoS2/NiO与还原氧化石墨烯杂化用于甘油和山梨醇电氧化","authors":"Mohammad Bagher Askari , Sadegh Azizi , Mohammad Taghi Tourchi Moghadam , Parisa Salarizadeh","doi":"10.1016/j.elecom.2025.107952","DOIUrl":null,"url":null,"abstract":"<div><div>Using glycerol and sorbitol as fuels in fuel cells has received limited attention in the literature. This study presents the synthesis of a composite material comprising molybdenum disulfide (MoS₂) and nickel oxide (NiO) via a hydrothermal method, which was subsequently hybridized with reduced graphene oxide (RGO) to enhance its catalytic performance. The catalytic activity of the MoS₂/NiO/RGO composite for the oxidation of glycerol and sorbitol was systematically evaluated. The results demonstrated exceptional catalytic activity, with the current density of 311 mA/cm<sup>2</sup> at 0.5 V for MoS₂/NiO/RGO catalyst during glycerol oxidation reaction (GOR). Furthermore, the catalyst exhibited remarkable stability, maintaining 86.6 % of its activity after 5 h of chronoamperometric analysis in the glycerol oxidation reaction. In the case of the sorbitol oxidation reaction (SOR), the MoS₂/NiO/RGO composite delivered impressive results, achieving 205 mA/cm<sup>2</sup> at 0.51 V and a stability of 90.2 %. This research is promising for introducing cost-effective, durable, and efficient catalysts to oxidize alternative fuels, with potential applications in fuel cell anodes.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"176 ","pages":"Article 107952"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoS2/NiO hybridized with reduced graphene oxide for glycerol and sorbitol electrooxidation\",\"authors\":\"Mohammad Bagher Askari , Sadegh Azizi , Mohammad Taghi Tourchi Moghadam , Parisa Salarizadeh\",\"doi\":\"10.1016/j.elecom.2025.107952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using glycerol and sorbitol as fuels in fuel cells has received limited attention in the literature. This study presents the synthesis of a composite material comprising molybdenum disulfide (MoS₂) and nickel oxide (NiO) via a hydrothermal method, which was subsequently hybridized with reduced graphene oxide (RGO) to enhance its catalytic performance. The catalytic activity of the MoS₂/NiO/RGO composite for the oxidation of glycerol and sorbitol was systematically evaluated. The results demonstrated exceptional catalytic activity, with the current density of 311 mA/cm<sup>2</sup> at 0.5 V for MoS₂/NiO/RGO catalyst during glycerol oxidation reaction (GOR). Furthermore, the catalyst exhibited remarkable stability, maintaining 86.6 % of its activity after 5 h of chronoamperometric analysis in the glycerol oxidation reaction. In the case of the sorbitol oxidation reaction (SOR), the MoS₂/NiO/RGO composite delivered impressive results, achieving 205 mA/cm<sup>2</sup> at 0.51 V and a stability of 90.2 %. This research is promising for introducing cost-effective, durable, and efficient catalysts to oxidize alternative fuels, with potential applications in fuel cell anodes.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"176 \",\"pages\":\"Article 107952\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125000918\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000918","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
MoS2/NiO hybridized with reduced graphene oxide for glycerol and sorbitol electrooxidation
Using glycerol and sorbitol as fuels in fuel cells has received limited attention in the literature. This study presents the synthesis of a composite material comprising molybdenum disulfide (MoS₂) and nickel oxide (NiO) via a hydrothermal method, which was subsequently hybridized with reduced graphene oxide (RGO) to enhance its catalytic performance. The catalytic activity of the MoS₂/NiO/RGO composite for the oxidation of glycerol and sorbitol was systematically evaluated. The results demonstrated exceptional catalytic activity, with the current density of 311 mA/cm2 at 0.5 V for MoS₂/NiO/RGO catalyst during glycerol oxidation reaction (GOR). Furthermore, the catalyst exhibited remarkable stability, maintaining 86.6 % of its activity after 5 h of chronoamperometric analysis in the glycerol oxidation reaction. In the case of the sorbitol oxidation reaction (SOR), the MoS₂/NiO/RGO composite delivered impressive results, achieving 205 mA/cm2 at 0.51 V and a stability of 90.2 %. This research is promising for introducing cost-effective, durable, and efficient catalysts to oxidize alternative fuels, with potential applications in fuel cell anodes.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.