双稳非线性守恒反应扩散体系中单过渡层的稳定性

IF 2.3 2区 数学 Q1 MATHEMATICS
Hideo Ikeda , Masataka Kuwamura
{"title":"双稳非线性守恒反应扩散体系中单过渡层的稳定性","authors":"Hideo Ikeda ,&nbsp;Masataka Kuwamura","doi":"10.1016/j.jde.2025.113430","DOIUrl":null,"url":null,"abstract":"<div><div>Mass-conserving reaction-diffusion systems with bistable nonlinearity are considered under general assumptions. The existence of stationary solutions with a single internal transition layer in such reaction-diffusion systems is shown using the analytical singular perturbation theory. Moreover, a stability criterion for the stationary solutions is provided by calculating the Evans function.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"440 ","pages":"Article 113430"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of single transition layer in mass-conserving reaction-diffusion systems with bistable nonlinearity\",\"authors\":\"Hideo Ikeda ,&nbsp;Masataka Kuwamura\",\"doi\":\"10.1016/j.jde.2025.113430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mass-conserving reaction-diffusion systems with bistable nonlinearity are considered under general assumptions. The existence of stationary solutions with a single internal transition layer in such reaction-diffusion systems is shown using the analytical singular perturbation theory. Moreover, a stability criterion for the stationary solutions is provided by calculating the Evans function.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"440 \",\"pages\":\"Article 113430\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004577\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004577","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一般假设下,研究具有双稳态非线性的质量守恒反应扩散系统。利用解析奇异摄动理论,证明了该类反应扩散系统具有单内过渡层的平稳解的存在性。此外,通过计算Evans函数,给出了平稳解的稳定性判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of single transition layer in mass-conserving reaction-diffusion systems with bistable nonlinearity
Mass-conserving reaction-diffusion systems with bistable nonlinearity are considered under general assumptions. The existence of stationary solutions with a single internal transition layer in such reaction-diffusion systems is shown using the analytical singular perturbation theory. Moreover, a stability criterion for the stationary solutions is provided by calculating the Evans function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信