Leah Liu Wang , Patrick Keiser , Derek Yang , Javier Seravalli , J.J. Patten , Brett Eaton , Dirk Anderson , Yi Liu , Michael R. Holbrook , Amos B. Smith III , Robert A. Davey , Shi-Hua Xiang
{"title":"可溶性CD4通过靶向内体受体结合位点抑制埃博拉病毒感染","authors":"Leah Liu Wang , Patrick Keiser , Derek Yang , Javier Seravalli , J.J. Patten , Brett Eaton , Dirk Anderson , Yi Liu , Michael R. Holbrook , Amos B. Smith III , Robert A. Davey , Shi-Hua Xiang","doi":"10.1016/j.isci.2025.112573","DOIUrl":null,"url":null,"abstract":"<div><div>Human CD4 (cluster of differentiation 4) is well known as the primary receptor for human immunodeficiency virus (HIV) entry into the cells. The virus binds to CD4 molecules to induce a conformational change in the viral glycoprotein (GP) gp120, which exposes the co-receptor binding site for coreceptors CCR5 or CXCR4. The co-receptor binding then leads to membrane fusion for viral entry. Since the CD4 molecule has a high affinity for gp120, soluble CD4 (sCD4) and CD4-mimetic small molecules (CD4mcs) have been extensively studied as potential inhibitors for HIV infection. Surprisingly, we have found that human sCD4 and some CD4mcs are able to inhibit Ebola virus (EBOV) infection. Evidence is provided that the compounds block viral entry by targeting the GP binding site for the endosomal receptor Niemann-Pick C1 (NPC1). This finding reveals virus-receptor binding similarities between two remote viruses (HIV and EBOV) and suggests new possibilities for EBOV entry inhibitors.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 6","pages":"Article 112573"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soluble CD4 inhibits Ebola virus infection by targeting endosomal receptor-binding site\",\"authors\":\"Leah Liu Wang , Patrick Keiser , Derek Yang , Javier Seravalli , J.J. Patten , Brett Eaton , Dirk Anderson , Yi Liu , Michael R. Holbrook , Amos B. Smith III , Robert A. Davey , Shi-Hua Xiang\",\"doi\":\"10.1016/j.isci.2025.112573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human CD4 (cluster of differentiation 4) is well known as the primary receptor for human immunodeficiency virus (HIV) entry into the cells. The virus binds to CD4 molecules to induce a conformational change in the viral glycoprotein (GP) gp120, which exposes the co-receptor binding site for coreceptors CCR5 or CXCR4. The co-receptor binding then leads to membrane fusion for viral entry. Since the CD4 molecule has a high affinity for gp120, soluble CD4 (sCD4) and CD4-mimetic small molecules (CD4mcs) have been extensively studied as potential inhibitors for HIV infection. Surprisingly, we have found that human sCD4 and some CD4mcs are able to inhibit Ebola virus (EBOV) infection. Evidence is provided that the compounds block viral entry by targeting the GP binding site for the endosomal receptor Niemann-Pick C1 (NPC1). This finding reveals virus-receptor binding similarities between two remote viruses (HIV and EBOV) and suggests new possibilities for EBOV entry inhibitors.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 6\",\"pages\":\"Article 112573\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258900422500834X\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258900422500834X","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Soluble CD4 inhibits Ebola virus infection by targeting endosomal receptor-binding site
Human CD4 (cluster of differentiation 4) is well known as the primary receptor for human immunodeficiency virus (HIV) entry into the cells. The virus binds to CD4 molecules to induce a conformational change in the viral glycoprotein (GP) gp120, which exposes the co-receptor binding site for coreceptors CCR5 or CXCR4. The co-receptor binding then leads to membrane fusion for viral entry. Since the CD4 molecule has a high affinity for gp120, soluble CD4 (sCD4) and CD4-mimetic small molecules (CD4mcs) have been extensively studied as potential inhibitors for HIV infection. Surprisingly, we have found that human sCD4 and some CD4mcs are able to inhibit Ebola virus (EBOV) infection. Evidence is provided that the compounds block viral entry by targeting the GP binding site for the endosomal receptor Niemann-Pick C1 (NPC1). This finding reveals virus-receptor binding similarities between two remote viruses (HIV and EBOV) and suggests new possibilities for EBOV entry inhibitors.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.