Nian Liu , Yuanmei Zhu , Huihui Chong , Sheng Cui , Yuxian He
{"title":"HIV融合抑制剂LP-98的结构特征:抗病毒和耐药机制的见解","authors":"Nian Liu , Yuanmei Zhu , Huihui Chong , Sheng Cui , Yuxian He","doi":"10.1016/j.antiviral.2025.106190","DOIUrl":null,"url":null,"abstract":"<div><div>LP-98 is a lipopeptide-based HIV fusion inhibitor with exceptional potency and long-acting antiviral activity, currently in phase II clinical trials. In this study, we elucidated the structural basis of LP-98's antiviral activity and resistance mechanisms. Using AlphaFold3, we first predicted the six-helical bundle (6-HB) structure formed by LP-98 and the gp41-derived NHR peptide N44, identifying key residues mediating interhelical interactions. Subsequent crystallographic analysis of the LP-98/N44 complex confirmed these binding features, revealing that a cluster of hydrophobic residues in LP-98, along with a network of 15 hydrogen bonds, two electrostatic interactions and a salt bridge, critically stabilizes the 6-HB structure. Superposition analyses of the LP-98/N44 crystal structure with either the predicted 6-HB model or the LP-40/N44 crystal structure provided further mechanistic insights into LP-98's binding mode. Additionally, structural and functional characterization of the N-terminal Tyr-127 residue using a truncated variant (LP-98-Y) demonstrated its essential role in inhibitor binding and antiviral activity. Notably, LP-98 exhibited significantly reduced efficacy against T20-resistant HIV strains harboring single or double mutations in NHR. Our structural models shed light on the molecular basis of this resistance, offering critical insights for drug optimization. Collectively, these findings provide a detailed structural understanding of LP-98's antiviral mechanism, supporting its continued development as a promising next-generation HIV fusion inhibitor.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"239 ","pages":"Article 106190"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of HIV fusion inhibitor LP-98: Insights into antiviral and resistance mechanisms\",\"authors\":\"Nian Liu , Yuanmei Zhu , Huihui Chong , Sheng Cui , Yuxian He\",\"doi\":\"10.1016/j.antiviral.2025.106190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LP-98 is a lipopeptide-based HIV fusion inhibitor with exceptional potency and long-acting antiviral activity, currently in phase II clinical trials. In this study, we elucidated the structural basis of LP-98's antiviral activity and resistance mechanisms. Using AlphaFold3, we first predicted the six-helical bundle (6-HB) structure formed by LP-98 and the gp41-derived NHR peptide N44, identifying key residues mediating interhelical interactions. Subsequent crystallographic analysis of the LP-98/N44 complex confirmed these binding features, revealing that a cluster of hydrophobic residues in LP-98, along with a network of 15 hydrogen bonds, two electrostatic interactions and a salt bridge, critically stabilizes the 6-HB structure. Superposition analyses of the LP-98/N44 crystal structure with either the predicted 6-HB model or the LP-40/N44 crystal structure provided further mechanistic insights into LP-98's binding mode. Additionally, structural and functional characterization of the N-terminal Tyr-127 residue using a truncated variant (LP-98-Y) demonstrated its essential role in inhibitor binding and antiviral activity. Notably, LP-98 exhibited significantly reduced efficacy against T20-resistant HIV strains harboring single or double mutations in NHR. Our structural models shed light on the molecular basis of this resistance, offering critical insights for drug optimization. Collectively, these findings provide a detailed structural understanding of LP-98's antiviral mechanism, supporting its continued development as a promising next-generation HIV fusion inhibitor.</div></div>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\"239 \",\"pages\":\"Article 106190\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166354225001160\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225001160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Structural characterization of HIV fusion inhibitor LP-98: Insights into antiviral and resistance mechanisms
LP-98 is a lipopeptide-based HIV fusion inhibitor with exceptional potency and long-acting antiviral activity, currently in phase II clinical trials. In this study, we elucidated the structural basis of LP-98's antiviral activity and resistance mechanisms. Using AlphaFold3, we first predicted the six-helical bundle (6-HB) structure formed by LP-98 and the gp41-derived NHR peptide N44, identifying key residues mediating interhelical interactions. Subsequent crystallographic analysis of the LP-98/N44 complex confirmed these binding features, revealing that a cluster of hydrophobic residues in LP-98, along with a network of 15 hydrogen bonds, two electrostatic interactions and a salt bridge, critically stabilizes the 6-HB structure. Superposition analyses of the LP-98/N44 crystal structure with either the predicted 6-HB model or the LP-40/N44 crystal structure provided further mechanistic insights into LP-98's binding mode. Additionally, structural and functional characterization of the N-terminal Tyr-127 residue using a truncated variant (LP-98-Y) demonstrated its essential role in inhibitor binding and antiviral activity. Notably, LP-98 exhibited significantly reduced efficacy against T20-resistant HIV strains harboring single or double mutations in NHR. Our structural models shed light on the molecular basis of this resistance, offering critical insights for drug optimization. Collectively, these findings provide a detailed structural understanding of LP-98's antiviral mechanism, supporting its continued development as a promising next-generation HIV fusion inhibitor.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.