Yanjie Zhang, Lu Zhang, Mengyu Sun, Fang Pu*, Wenjie Wang, Anjun Song, Jinsong Ren* and Xiaogang Qu*,
{"title":"细胞内不稳定铜池介导的焦亡诱导剂的原位生成用于安全可靠的抗肿瘤免疫治疗","authors":"Yanjie Zhang, Lu Zhang, Mengyu Sun, Fang Pu*, Wenjie Wang, Anjun Song, Jinsong Ren* and Xiaogang Qu*, ","doi":"10.1021/acsnano.4c1532410.1021/acsnano.4c15324","DOIUrl":null,"url":null,"abstract":"<p >Pyroptosis has garnered increasing interest in the realm of cancer immunotherapy. Utilizing reactive oxygen species (ROS) to trigger oxidative stress is considered an effective strategy for promoting pyroptosis. However, existing catalytic nanoparticles used as pyroptosis inducers contain heavy metals, which inevitably cause potential side effects on normal tissues due to their high toxicity and off-target effects. Herein, a labile copper pool-mediated in situ pyroptosis inducer was designed and developed using a hydrogen-bonded organic framework (HOF)-based nanoplatform to achieve safe and robust antitumor immunotherapy. The nanoplatform could target mitochondria and elevate labile Cu<sup>2+</sup> levels in cells, implementing the in situ synthesis of a pyroptosis inducer through the formation of catalytic nanoparticles with peroxidase (POD) and superoxide dismutase (SOD)-mimicking activities. Our results confirmed that the nanoplatform could generate high levels of ROS, resulting in pyroptotic cell death. When combined with antiprogrammed death receptor 1 therapy (αPD-1), the pyroptosis inducer exhibited excellent antitumor capacity in tumor models. Meanwhile, it exhibited minimal toxicity to healthy tissues due to the low intracellular copper concentration in normal cells. Overall, our work provides potential for the development of efficient and safe antitumor immunotherapy.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 19","pages":"18129–18142 18129–18142"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Generation of Pyroptosis Inducer Mediated by Intracellular Labile Copper Pool for Safe and Robust Antitumor Immunotherapy\",\"authors\":\"Yanjie Zhang, Lu Zhang, Mengyu Sun, Fang Pu*, Wenjie Wang, Anjun Song, Jinsong Ren* and Xiaogang Qu*, \",\"doi\":\"10.1021/acsnano.4c1532410.1021/acsnano.4c15324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pyroptosis has garnered increasing interest in the realm of cancer immunotherapy. Utilizing reactive oxygen species (ROS) to trigger oxidative stress is considered an effective strategy for promoting pyroptosis. However, existing catalytic nanoparticles used as pyroptosis inducers contain heavy metals, which inevitably cause potential side effects on normal tissues due to their high toxicity and off-target effects. Herein, a labile copper pool-mediated in situ pyroptosis inducer was designed and developed using a hydrogen-bonded organic framework (HOF)-based nanoplatform to achieve safe and robust antitumor immunotherapy. The nanoplatform could target mitochondria and elevate labile Cu<sup>2+</sup> levels in cells, implementing the in situ synthesis of a pyroptosis inducer through the formation of catalytic nanoparticles with peroxidase (POD) and superoxide dismutase (SOD)-mimicking activities. Our results confirmed that the nanoplatform could generate high levels of ROS, resulting in pyroptotic cell death. When combined with antiprogrammed death receptor 1 therapy (αPD-1), the pyroptosis inducer exhibited excellent antitumor capacity in tumor models. Meanwhile, it exhibited minimal toxicity to healthy tissues due to the low intracellular copper concentration in normal cells. Overall, our work provides potential for the development of efficient and safe antitumor immunotherapy.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 19\",\"pages\":\"18129–18142 18129–18142\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c15324\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c15324","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Generation of Pyroptosis Inducer Mediated by Intracellular Labile Copper Pool for Safe and Robust Antitumor Immunotherapy
Pyroptosis has garnered increasing interest in the realm of cancer immunotherapy. Utilizing reactive oxygen species (ROS) to trigger oxidative stress is considered an effective strategy for promoting pyroptosis. However, existing catalytic nanoparticles used as pyroptosis inducers contain heavy metals, which inevitably cause potential side effects on normal tissues due to their high toxicity and off-target effects. Herein, a labile copper pool-mediated in situ pyroptosis inducer was designed and developed using a hydrogen-bonded organic framework (HOF)-based nanoplatform to achieve safe and robust antitumor immunotherapy. The nanoplatform could target mitochondria and elevate labile Cu2+ levels in cells, implementing the in situ synthesis of a pyroptosis inducer through the formation of catalytic nanoparticles with peroxidase (POD) and superoxide dismutase (SOD)-mimicking activities. Our results confirmed that the nanoplatform could generate high levels of ROS, resulting in pyroptotic cell death. When combined with antiprogrammed death receptor 1 therapy (αPD-1), the pyroptosis inducer exhibited excellent antitumor capacity in tumor models. Meanwhile, it exhibited minimal toxicity to healthy tissues due to the low intracellular copper concentration in normal cells. Overall, our work provides potential for the development of efficient and safe antitumor immunotherapy.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.