推拉效应通过电子定向转移实现大面积无铅钙钛矿发光二极管

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Jie Wang, Dongyuan Han, Bin Zhao, Ziang Zang, Huiyu Ji, Lang Liu, Ning Wang
{"title":"推拉效应通过电子定向转移实现大面积无铅钙钛矿发光二极管","authors":"Jie Wang, Dongyuan Han, Bin Zhao, Ziang Zang, Huiyu Ji, Lang Liu, Ning Wang","doi":"10.1002/lpor.202500727","DOIUrl":null,"url":null,"abstract":"Tin (Sn) perovskites have emerged as viable candidates for high‐performance, lead‐free perovskite light‐emitting diodes (PeLEDs). However, the limited availability of efficient and stable Sn perovskites, and the development of large‐area Sn PeLEDs encourage further research. Here, FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> (FPEAI, 4‐fluoro‐phenethylammonium iodide) perovskite is reported as a potential emitter for PeLEDs. To overcome the anisotropic carrier transport in layered FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites, an electronic push‐pull effect strategy is introduced by incorporating 6‐amino‐4‐hydroxy‐2‐naphthalenesulfonic acid (γ acid) molecule in FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites. The unique electronically push‐pull configuration of γ acid establishes a cross‐layer electron transfer channel, which mitigates electron aggregation within the organic layers, enhances electron injection and directional transfer, and effectively promotes radiative recombination. Furthermore, multifunctional γ acid provides multiple interaction sites for Sn perovskites, reducing defect state density and stabilizing FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites. Leveraging the enhanced robustness of FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> films with γ acid, a large‐area Sn PeLED with an active area of 2.25 cm<jats:sup>2</jats:sup>, achieves a maximum luminance (<jats:italic>L</jats:italic><jats:sub>max</jats:sub>) of 371 cd m<jats:sup>−2</jats:sup>, a peak external quantum efficiency (EQE) of 15.49%, and an operational half‐lifetime of 71.6 h at 100 cd m<jats:sup>−2</jats:sup>. These findings underscore the application potential of Sn PeLEDs in the realms of solid‐state lighting and planar display.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"41 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Push‐Pull Effect Enables Large‐Area Lead‐Free Perovskite Light‐Emitting Diodes via Electron Directional Transfer\",\"authors\":\"Jie Wang, Dongyuan Han, Bin Zhao, Ziang Zang, Huiyu Ji, Lang Liu, Ning Wang\",\"doi\":\"10.1002/lpor.202500727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin (Sn) perovskites have emerged as viable candidates for high‐performance, lead‐free perovskite light‐emitting diodes (PeLEDs). However, the limited availability of efficient and stable Sn perovskites, and the development of large‐area Sn PeLEDs encourage further research. Here, FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> (FPEAI, 4‐fluoro‐phenethylammonium iodide) perovskite is reported as a potential emitter for PeLEDs. To overcome the anisotropic carrier transport in layered FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites, an electronic push‐pull effect strategy is introduced by incorporating 6‐amino‐4‐hydroxy‐2‐naphthalenesulfonic acid (γ acid) molecule in FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites. The unique electronically push‐pull configuration of γ acid establishes a cross‐layer electron transfer channel, which mitigates electron aggregation within the organic layers, enhances electron injection and directional transfer, and effectively promotes radiative recombination. Furthermore, multifunctional γ acid provides multiple interaction sites for Sn perovskites, reducing defect state density and stabilizing FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> perovskites. Leveraging the enhanced robustness of FPEA<jats:sub>2</jats:sub>SnI<jats:sub>4</jats:sub> films with γ acid, a large‐area Sn PeLED with an active area of 2.25 cm<jats:sup>2</jats:sup>, achieves a maximum luminance (<jats:italic>L</jats:italic><jats:sub>max</jats:sub>) of 371 cd m<jats:sup>−2</jats:sup>, a peak external quantum efficiency (EQE) of 15.49%, and an operational half‐lifetime of 71.6 h at 100 cd m<jats:sup>−2</jats:sup>. These findings underscore the application potential of Sn PeLEDs in the realms of solid‐state lighting and planar display.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500727\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500727","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

锡(Sn)钙钛矿已成为高性能、无铅钙钛矿发光二极管(PeLEDs)的可行候选材料。然而,高效和稳定的锡钙钛矿的有限可用性以及大面积锡电致发光二极管的发展鼓励了进一步的研究。在这里,FPEA2SnI4 (FPEAI, 4 -氟-苯乙基碘化铵)钙钛矿被报道为pled的潜在发射体。为了克服层状FPEA2SnI4钙钛矿中载流子的各向异性输运,在FPEA2SnI4钙钛矿中引入了6 -氨基- 4 -羟基- 2 -萘磺酸(γ酸)分子的电子推拉效应策略。γ酸独特的电子推拉结构建立了一个跨层电子传递通道,减轻了有机层内的电子聚集,增强了电子注入和定向转移,并有效地促进了辐射重组。此外,多功能γ酸为Sn钙钛矿提供了多个相互作用位点,降低了缺陷态密度,稳定了FPEA2SnI4钙钛矿。利用γ酸增强的FPEA2SnI4薄膜的鲁稳性,大面积Sn PeLED的活性面积为2.25 cm2,最大亮度(Lmax)为371 cd m−2,峰值外量子效率(EQE)为15.49%,工作半衰期为71.6 h在100 cd m−2。这些发现强调了Sn pled在固态照明和平面显示领域的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Push‐Pull Effect Enables Large‐Area Lead‐Free Perovskite Light‐Emitting Diodes via Electron Directional Transfer

Push‐Pull Effect Enables Large‐Area Lead‐Free Perovskite Light‐Emitting Diodes via Electron Directional Transfer
Tin (Sn) perovskites have emerged as viable candidates for high‐performance, lead‐free perovskite light‐emitting diodes (PeLEDs). However, the limited availability of efficient and stable Sn perovskites, and the development of large‐area Sn PeLEDs encourage further research. Here, FPEA2SnI4 (FPEAI, 4‐fluoro‐phenethylammonium iodide) perovskite is reported as a potential emitter for PeLEDs. To overcome the anisotropic carrier transport in layered FPEA2SnI4 perovskites, an electronic push‐pull effect strategy is introduced by incorporating 6‐amino‐4‐hydroxy‐2‐naphthalenesulfonic acid (γ acid) molecule in FPEA2SnI4 perovskites. The unique electronically push‐pull configuration of γ acid establishes a cross‐layer electron transfer channel, which mitigates electron aggregation within the organic layers, enhances electron injection and directional transfer, and effectively promotes radiative recombination. Furthermore, multifunctional γ acid provides multiple interaction sites for Sn perovskites, reducing defect state density and stabilizing FPEA2SnI4 perovskites. Leveraging the enhanced robustness of FPEA2SnI4 films with γ acid, a large‐area Sn PeLED with an active area of 2.25 cm2, achieves a maximum luminance (Lmax) of 371 cd m−2, a peak external quantum efficiency (EQE) of 15.49%, and an operational half‐lifetime of 71.6 h at 100 cd m−2. These findings underscore the application potential of Sn PeLEDs in the realms of solid‐state lighting and planar display.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信