Theo Economou, Daphne Parliari, Aurelio Tobias, Laura Dawkins, Hamish Steptoe, Christophe Sarran, Oliver Stoner, Rachel Lowe, Jos Lelieveld
{"title":"使用mgcv计数数据的灵活分布式滞后模型","authors":"Theo Economou, Daphne Parliari, Aurelio Tobias, Laura Dawkins, Hamish Steptoe, Christophe Sarran, Oliver Stoner, Rachel Lowe, Jos Lelieveld","doi":"10.1080/00031305.2025.2505514","DOIUrl":null,"url":null,"abstract":"In this tutorial we present the use of R package <span>mgcv</span> to implement Distributed Lag Non-Linear Models (DLNMs) in a flexible way. Interpretation of smoothing splines as random quantities enables approximate Bayesian inference, which in turn allows uncertainty quantification and comprehensive model checking. We illustrate various modeling situations using open-access epidemiological data in conjunction with simulation experiments. We demonstrate the inclusion of temporal structures and the use of mixture distributions to allow for extreme outliers. Moreover, we demonstrate interactions of the temporal lagged structures with other covariates with different lagged periods for different covariates. Spatial structures are also demonstrated, including smooth spatial variability and Markov random fields, in addition to hierarchical formulations to allow for non-structured dependency. Posterior predictive simulation is used to ensure models verify well against the data.","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"33 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible distributed lag models for count data using mgcv\",\"authors\":\"Theo Economou, Daphne Parliari, Aurelio Tobias, Laura Dawkins, Hamish Steptoe, Christophe Sarran, Oliver Stoner, Rachel Lowe, Jos Lelieveld\",\"doi\":\"10.1080/00031305.2025.2505514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this tutorial we present the use of R package <span>mgcv</span> to implement Distributed Lag Non-Linear Models (DLNMs) in a flexible way. Interpretation of smoothing splines as random quantities enables approximate Bayesian inference, which in turn allows uncertainty quantification and comprehensive model checking. We illustrate various modeling situations using open-access epidemiological data in conjunction with simulation experiments. We demonstrate the inclusion of temporal structures and the use of mixture distributions to allow for extreme outliers. Moreover, we demonstrate interactions of the temporal lagged structures with other covariates with different lagged periods for different covariates. Spatial structures are also demonstrated, including smooth spatial variability and Markov random fields, in addition to hierarchical formulations to allow for non-structured dependency. Posterior predictive simulation is used to ensure models verify well against the data.\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2025.2505514\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2025.2505514","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Flexible distributed lag models for count data using mgcv
In this tutorial we present the use of R package mgcv to implement Distributed Lag Non-Linear Models (DLNMs) in a flexible way. Interpretation of smoothing splines as random quantities enables approximate Bayesian inference, which in turn allows uncertainty quantification and comprehensive model checking. We illustrate various modeling situations using open-access epidemiological data in conjunction with simulation experiments. We demonstrate the inclusion of temporal structures and the use of mixture distributions to allow for extreme outliers. Moreover, we demonstrate interactions of the temporal lagged structures with other covariates with different lagged periods for different covariates. Spatial structures are also demonstrated, including smooth spatial variability and Markov random fields, in addition to hierarchical formulations to allow for non-structured dependency. Posterior predictive simulation is used to ensure models verify well against the data.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.