卫星反演云特性的采样偏差及其对气溶胶-云相互作用的影响

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Goutam Choudhury, Tom Goren
{"title":"卫星反演云特性的采样偏差及其对气溶胶-云相互作用的影响","authors":"Goutam Choudhury,&nbsp;Tom Goren","doi":"10.1029/2025GL115429","DOIUrl":null,"url":null,"abstract":"<p>Satellite radiometers like MODIS use a bi-spectral retrieval algorithm to simultaneously retrieve cloud optical thickness and cloud effective radius <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>r</mi>\n <mi>e</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({r}_{\\mathrm{e}}\\right)$</annotation>\n </semantics></math>. However, retrievals fail for liquid clouds when the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{\\mathrm{e}}$</annotation>\n </semantics></math> observation exceeds the maximum threshold of 30 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m in MODIS's solution space, leading to a sampling bias. Here, we quantify this bias by reconstructing pixels with failed retrievals using two methods: a conservative approach assigning a fixed minimum <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{\\mathrm{e}}$</annotation>\n </semantics></math> threshold to failed pixels, and a representative approach modeling failed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>e</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{\\mathrm{e}}$</annotation>\n </semantics></math> using CloudSat radar measurements. We show that MODIS overestimates cloud droplet number concentration by 8%–9% and underestimates liquid water path by 8%–11% globally. We demonstrate that this bias can introduce erroneous correlations between cloud properties that may be misinterpreted as causal processes. Accordingly, we show that accounting for this bias increases the cloud water adjustments by 24%–36%, highlighting the crucial need to expand the solution space in MODIS and similar sensors.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115429","citationCount":"0","resultStr":"{\"title\":\"Sampling Bias From Satellite Retrieval Failures of Cloud Properties and Its Implications for Aerosol-Cloud Interactions\",\"authors\":\"Goutam Choudhury,&nbsp;Tom Goren\",\"doi\":\"10.1029/2025GL115429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Satellite radiometers like MODIS use a bi-spectral retrieval algorithm to simultaneously retrieve cloud optical thickness and cloud effective radius <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>r</mi>\\n <mi>e</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({r}_{\\\\mathrm{e}}\\\\right)$</annotation>\\n </semantics></math>. However, retrievals fail for liquid clouds when the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>e</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{\\\\mathrm{e}}$</annotation>\\n </semantics></math> observation exceeds the maximum threshold of 30 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation> ${\\\\upmu }$</annotation>\\n </semantics></math>m in MODIS's solution space, leading to a sampling bias. Here, we quantify this bias by reconstructing pixels with failed retrievals using two methods: a conservative approach assigning a fixed minimum <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>e</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{\\\\mathrm{e}}$</annotation>\\n </semantics></math> threshold to failed pixels, and a representative approach modeling failed <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>e</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{\\\\mathrm{e}}$</annotation>\\n </semantics></math> using CloudSat radar measurements. We show that MODIS overestimates cloud droplet number concentration by 8%–9% and underestimates liquid water path by 8%–11% globally. We demonstrate that this bias can introduce erroneous correlations between cloud properties that may be misinterpreted as causal processes. Accordingly, we show that accounting for this bias increases the cloud water adjustments by 24%–36%, highlighting the crucial need to expand the solution space in MODIS and similar sensors.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115429\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115429\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115429","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MODIS等卫星辐射计使用双谱检索算法同时检索云光学厚度和云有效半径(re)$\left({r}_{\ mathm {e}}\right)$。然而,当re${r}_{\ maththrm {e}}$观测值超过MODIS解空间的最大阈值30 μμ${\upmu}$m时,液体云的检索失败,导致采样偏差。在这里,我们通过使用两种方法重建失败检索的像素来量化这种偏差:一种保守方法为失败像素分配固定的最小re${r}_{\mathrm{e}}$阈值,以及一种使用CloudSat雷达测量数据建模失败re${r}_{\mathrm{e}}$的代表性方法。研究表明,MODIS在全球范围内高估了云滴数浓度8%-9%,低估了液态水路径8%-11%。我们证明,这种偏差可以引入云属性之间的错误相关性,可能被误解为因果过程。因此,我们表明,考虑到这种偏差,云水调整增加了24%-36%,突出了在MODIS和类似传感器中扩展解决方案空间的关键需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling Bias From Satellite Retrieval Failures of Cloud Properties and Its Implications for Aerosol-Cloud Interactions

Satellite radiometers like MODIS use a bi-spectral retrieval algorithm to simultaneously retrieve cloud optical thickness and cloud effective radius r e $\left({r}_{\mathrm{e}}\right)$ . However, retrievals fail for liquid clouds when the r e ${r}_{\mathrm{e}}$ observation exceeds the maximum threshold of 30  μ ${\upmu }$ m in MODIS's solution space, leading to a sampling bias. Here, we quantify this bias by reconstructing pixels with failed retrievals using two methods: a conservative approach assigning a fixed minimum r e ${r}_{\mathrm{e}}$ threshold to failed pixels, and a representative approach modeling failed r e ${r}_{\mathrm{e}}$ using CloudSat radar measurements. We show that MODIS overestimates cloud droplet number concentration by 8%–9% and underestimates liquid water path by 8%–11% globally. We demonstrate that this bias can introduce erroneous correlations between cloud properties that may be misinterpreted as causal processes. Accordingly, we show that accounting for this bias increases the cloud water adjustments by 24%–36%, highlighting the crucial need to expand the solution space in MODIS and similar sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信