用卷积神经网络解析南极最高降雪日数的区域驱动因素

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Rebecca Baiman, Andrew C. Winters, Kirsten J. Mayer, Clairisse A. Reiher
{"title":"用卷积神经网络解析南极最高降雪日数的区域驱动因素","authors":"Rebecca Baiman,&nbsp;Andrew C. Winters,&nbsp;Kirsten J. Mayer,&nbsp;Clairisse A. Reiher","doi":"10.1029/2025GL115254","DOIUrl":null,"url":null,"abstract":"<p>Snowfall is the primary contributor to Antarctic surface mass balance. Identifying regional-scale mechanisms that drive heavy snowfall provides context for changes in Antarctic surface mass balance in a warmer climate. We compare drivers of top snowfall days across five Antarctic regions using machine learning and traditional synoptic diagnostics. A convolutional neural network identifies top snow days with an accuracy of 92%–94% per region when trained on just atmospheric moisture and low-level meridional wind, highlighting the importance of atmospheric river-like structures to top Antarctic snowfall days. The network's skill depends mainly on low-level wind in East Antarctica and atmospheric moisture in West Antarctica, suggesting that dynamic processes are comparatively more important in driving East Antarctic top snowfall days. We leverage the quasi-geostrophic omega equation to identify mechanisms for ascent and snowfall production, and we find that East Antarctic top snowfall days feature stronger synoptic-scale forcing for ascent compared to West Antarctica.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115254","citationCount":"0","resultStr":"{\"title\":\"Disentangling Regional Drivers of Top Antarctic Snowfall Days With a Convolutional Neural Network\",\"authors\":\"Rebecca Baiman,&nbsp;Andrew C. Winters,&nbsp;Kirsten J. Mayer,&nbsp;Clairisse A. Reiher\",\"doi\":\"10.1029/2025GL115254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Snowfall is the primary contributor to Antarctic surface mass balance. Identifying regional-scale mechanisms that drive heavy snowfall provides context for changes in Antarctic surface mass balance in a warmer climate. We compare drivers of top snowfall days across five Antarctic regions using machine learning and traditional synoptic diagnostics. A convolutional neural network identifies top snow days with an accuracy of 92%–94% per region when trained on just atmospheric moisture and low-level meridional wind, highlighting the importance of atmospheric river-like structures to top Antarctic snowfall days. The network's skill depends mainly on low-level wind in East Antarctica and atmospheric moisture in West Antarctica, suggesting that dynamic processes are comparatively more important in driving East Antarctic top snowfall days. We leverage the quasi-geostrophic omega equation to identify mechanisms for ascent and snowfall production, and we find that East Antarctic top snowfall days feature stronger synoptic-scale forcing for ascent compared to West Antarctica.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL115254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115254\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL115254","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

降雪是南极地表物质平衡的主要贡献者。确定驱动强降雪的区域尺度机制为更温暖气候下南极地表物质平衡的变化提供了背景。我们使用机器学习和传统天气诊断比较了五个南极地区的最高降雪日驱动因素。当只考虑大气湿度和低空经向风时,卷积神经网络识别出每个地区最高降雪日数的准确率为92%-94%,突出了大气河状结构对南极最高降雪日数的重要性。该网络的能力主要依赖于东南极洲的低层风和西南极洲的大气湿度,这表明动力过程在驱动东南极洲顶部降雪日数方面相对更重要。我们利用准地转omega方程来确定上升和降雪产生的机制,我们发现与南极洲西部相比,南极东部的最高降雪日具有更强的上升天气尺度强迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangling Regional Drivers of Top Antarctic Snowfall Days With a Convolutional Neural Network

Snowfall is the primary contributor to Antarctic surface mass balance. Identifying regional-scale mechanisms that drive heavy snowfall provides context for changes in Antarctic surface mass balance in a warmer climate. We compare drivers of top snowfall days across five Antarctic regions using machine learning and traditional synoptic diagnostics. A convolutional neural network identifies top snow days with an accuracy of 92%–94% per region when trained on just atmospheric moisture and low-level meridional wind, highlighting the importance of atmospheric river-like structures to top Antarctic snowfall days. The network's skill depends mainly on low-level wind in East Antarctica and atmospheric moisture in West Antarctica, suggesting that dynamic processes are comparatively more important in driving East Antarctic top snowfall days. We leverage the quasi-geostrophic omega equation to identify mechanisms for ascent and snowfall production, and we find that East Antarctic top snowfall days feature stronger synoptic-scale forcing for ascent compared to West Antarctica.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信