刚地弓形虫呼吸链超复合体的结构、组装及抑制作用

Andrew E. MacLean, Shikha Shikha, Mariana Ferreira Silva, Max J. Gramelspacher, Aaron Nilsen, Katherine M. Liebman, Sovitj Pou, Rolf W. Winter, Amit Meir, Michael K. Riscoe, J. Stone Doggett, Lilach Sheiner, Alexander Mühleip
{"title":"刚地弓形虫呼吸链超复合体的结构、组装及抑制作用","authors":"Andrew E. MacLean, Shikha Shikha, Mariana Ferreira Silva, Max J. Gramelspacher, Aaron Nilsen, Katherine M. Liebman, Sovitj Pou, Rolf W. Winter, Amit Meir, Michael K. Riscoe, J. Stone Doggett, Lilach Sheiner, Alexander Mühleip","doi":"10.1038/s41594-025-01531-7","DOIUrl":null,"url":null,"abstract":"<p>The apicomplexan mitochondrial electron transport chain is essential for parasite survival and displays a divergent subunit composition. Here we report cryo-electron microscopy structures of an apicomplexan III<sub>2</sub>–IV supercomplex and of the drug target complex III<sub>2</sub>. The supercomplex structure reveals how clade-specific subunits form an apicomplexan-conserved III<sub>2</sub>–IV interface with a unique, kinked architecture, suggesting that supercomplexes evolved independently in different eukaryotic lineages. A knockout resulting in supercomplex disassembly challenges the proposed role of III<sub>2</sub>–IV in electron transfer efficiency as suggested for mammals. Nevertheless, knockout analysis indicates that III<sub>2</sub>–IV is critical for parasite fitness. The complexes from the model parasite <i>Toxoplasma gondii</i> were inhibited with the antimalarial atovaquone, revealing interactions underpinning species specificity. They were also inhibited with endochin-like quinolone (ELQ)-300, an inhibitor in late-stage preclinical development. Notably, in the apicomplexan binding site, ELQ-300 is flipped compared with related compounds in the mammalian enzyme. On the basis of the binding modes and parasite-specific interactions discovered, we designed more potent ELQs with subnanomolar activity against <i>T.</i> <i>gondii</i>. Our findings reveal critical evolutionary differences in the role of supercomplexes in mitochondrial biology and provide insight into cytochrome <i>b</i> inhibition, informing future drug discovery.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex\",\"authors\":\"Andrew E. MacLean, Shikha Shikha, Mariana Ferreira Silva, Max J. Gramelspacher, Aaron Nilsen, Katherine M. Liebman, Sovitj Pou, Rolf W. Winter, Amit Meir, Michael K. Riscoe, J. Stone Doggett, Lilach Sheiner, Alexander Mühleip\",\"doi\":\"10.1038/s41594-025-01531-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The apicomplexan mitochondrial electron transport chain is essential for parasite survival and displays a divergent subunit composition. Here we report cryo-electron microscopy structures of an apicomplexan III<sub>2</sub>–IV supercomplex and of the drug target complex III<sub>2</sub>. The supercomplex structure reveals how clade-specific subunits form an apicomplexan-conserved III<sub>2</sub>–IV interface with a unique, kinked architecture, suggesting that supercomplexes evolved independently in different eukaryotic lineages. A knockout resulting in supercomplex disassembly challenges the proposed role of III<sub>2</sub>–IV in electron transfer efficiency as suggested for mammals. Nevertheless, knockout analysis indicates that III<sub>2</sub>–IV is critical for parasite fitness. The complexes from the model parasite <i>Toxoplasma gondii</i> were inhibited with the antimalarial atovaquone, revealing interactions underpinning species specificity. They were also inhibited with endochin-like quinolone (ELQ)-300, an inhibitor in late-stage preclinical development. Notably, in the apicomplexan binding site, ELQ-300 is flipped compared with related compounds in the mammalian enzyme. On the basis of the binding modes and parasite-specific interactions discovered, we designed more potent ELQs with subnanomolar activity against <i>T.</i> <i>gondii</i>. Our findings reveal critical evolutionary differences in the role of supercomplexes in mitochondrial biology and provide insight into cytochrome <i>b</i> inhibition, informing future drug discovery.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01531-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01531-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

顶复合体线粒体电子传递链对寄生虫的生存至关重要,并表现出不同的亚基组成。在这里,我们报告了顶端复合物III2 - iv超复合物和药物靶复合物III2的低温电镜结构。超复合体结构揭示了进化枝特异性亚基如何形成一个具有独特的、结结结构的顶端复合体-保守的III2-IV界面,这表明超复合体在不同的真核生物谱系中独立进化。基因敲除导致超复合体解体,挑战了iiii - iv在哺乳动物中电子传递效率中的作用。然而,敲除分析表明,III2-IV对寄生虫的适应性至关重要。来自弓形虫模型的复合物被抗疟药物阿托伐醌抑制,揭示了物种特异性的相互作用。内啡肽样喹诺酮(ELQ)-300是一种后期临床前开发的抑制剂。值得注意的是,在顶端复合体结合位点,ELQ-300与哺乳动物酶中的相关化合物相比是翻转的。基于所发现的结合模式和寄生虫特异性相互作用,我们设计了更多具有亚纳摩尔活性的抗弓形虫elq。我们的研究结果揭示了超复合物在线粒体生物学中作用的关键进化差异,并为细胞色素b抑制提供了见解,为未来的药物发现提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex

Structure, assembly and inhibition of the Toxoplasma gondii respiratory chain supercomplex

The apicomplexan mitochondrial electron transport chain is essential for parasite survival and displays a divergent subunit composition. Here we report cryo-electron microscopy structures of an apicomplexan III2–IV supercomplex and of the drug target complex III2. The supercomplex structure reveals how clade-specific subunits form an apicomplexan-conserved III2–IV interface with a unique, kinked architecture, suggesting that supercomplexes evolved independently in different eukaryotic lineages. A knockout resulting in supercomplex disassembly challenges the proposed role of III2–IV in electron transfer efficiency as suggested for mammals. Nevertheless, knockout analysis indicates that III2–IV is critical for parasite fitness. The complexes from the model parasite Toxoplasma gondii were inhibited with the antimalarial atovaquone, revealing interactions underpinning species specificity. They were also inhibited with endochin-like quinolone (ELQ)-300, an inhibitor in late-stage preclinical development. Notably, in the apicomplexan binding site, ELQ-300 is flipped compared with related compounds in the mammalian enzyme. On the basis of the binding modes and parasite-specific interactions discovered, we designed more potent ELQs with subnanomolar activity against T.gondii. Our findings reveal critical evolutionary differences in the role of supercomplexes in mitochondrial biology and provide insight into cytochrome b inhibition, informing future drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信