{"title":"强效干扰素基因小分子刺激剂抑制剂和干扰素基因突变特异性降解刺激剂的设计。","authors":"Hong-Yi Zhao,Luchen Zhang,Zhongwei Liu,Miao He,Meilin Wang,Qiuxia Li,Farzad Sarkari,Jinsong Tao,Bo Wen,Venkatesha Basrur,Hannah Myatt,Alexey Nesvizhskii,Duxin Sun","doi":"10.1021/acs.jmedchem.5c00123","DOIUrl":null,"url":null,"abstract":"Stimulator of interferon genes (STING) is involved in various autoimmune diseases. However, it is challenging to develop small-molecule STING inhibitors with potent activity. Herein, we designed a small-molecule STING inhibitor and STING mutant-specific degrader by binding two coupled pockets of a STING dimer. Structure optimization selected SI-24, SI-42, and SI-43 with low nanomolar activity to inhibit 2'3'-cyclic GMP-AMP (cGAMP)-induced STING activation and release of IFN-β and CXCL-10, which were far more potent than reported STING inhibitors. Moreover, the three lead compounds suppressed cGAMP-induced oligomerization of STING and phosphorylation of interferon regulatory factor 3 (IRF3) and STING. Surprisingly, SI-43 promoted mutant-specific and proteasome-independent degradation of STINGS154 and STINGM155. Subcutaneous or oral administration of SI-24, SI-42, and SI-43 reduced serum IFN-β and CXCL-10 in the cGAMP-induced autoimmune disease mouse model. Our dual-functional compounds provide a new strategy to investigate STING function through both inhibition and mutant-specific degradation in autoimmune diseases.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"208 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Potent Small-Molecule Stimulator of Interferon Gene Inhibitor and Stimulator of Interferon Gene Mutant-Specific Degrader.\",\"authors\":\"Hong-Yi Zhao,Luchen Zhang,Zhongwei Liu,Miao He,Meilin Wang,Qiuxia Li,Farzad Sarkari,Jinsong Tao,Bo Wen,Venkatesha Basrur,Hannah Myatt,Alexey Nesvizhskii,Duxin Sun\",\"doi\":\"10.1021/acs.jmedchem.5c00123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stimulator of interferon genes (STING) is involved in various autoimmune diseases. However, it is challenging to develop small-molecule STING inhibitors with potent activity. Herein, we designed a small-molecule STING inhibitor and STING mutant-specific degrader by binding two coupled pockets of a STING dimer. Structure optimization selected SI-24, SI-42, and SI-43 with low nanomolar activity to inhibit 2'3'-cyclic GMP-AMP (cGAMP)-induced STING activation and release of IFN-β and CXCL-10, which were far more potent than reported STING inhibitors. Moreover, the three lead compounds suppressed cGAMP-induced oligomerization of STING and phosphorylation of interferon regulatory factor 3 (IRF3) and STING. Surprisingly, SI-43 promoted mutant-specific and proteasome-independent degradation of STINGS154 and STINGM155. Subcutaneous or oral administration of SI-24, SI-42, and SI-43 reduced serum IFN-β and CXCL-10 in the cGAMP-induced autoimmune disease mouse model. Our dual-functional compounds provide a new strategy to investigate STING function through both inhibition and mutant-specific degradation in autoimmune diseases.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.5c00123\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00123","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design of Potent Small-Molecule Stimulator of Interferon Gene Inhibitor and Stimulator of Interferon Gene Mutant-Specific Degrader.
Stimulator of interferon genes (STING) is involved in various autoimmune diseases. However, it is challenging to develop small-molecule STING inhibitors with potent activity. Herein, we designed a small-molecule STING inhibitor and STING mutant-specific degrader by binding two coupled pockets of a STING dimer. Structure optimization selected SI-24, SI-42, and SI-43 with low nanomolar activity to inhibit 2'3'-cyclic GMP-AMP (cGAMP)-induced STING activation and release of IFN-β and CXCL-10, which were far more potent than reported STING inhibitors. Moreover, the three lead compounds suppressed cGAMP-induced oligomerization of STING and phosphorylation of interferon regulatory factor 3 (IRF3) and STING. Surprisingly, SI-43 promoted mutant-specific and proteasome-independent degradation of STINGS154 and STINGM155. Subcutaneous or oral administration of SI-24, SI-42, and SI-43 reduced serum IFN-β and CXCL-10 in the cGAMP-induced autoimmune disease mouse model. Our dual-functional compounds provide a new strategy to investigate STING function through both inhibition and mutant-specific degradation in autoimmune diseases.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.