浆料铸造Li₆PS₅Cl胶带的单轴致密化:粒度分布和致密化压力的作用。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Quoc-Anh Tran, Meenal Agrawal, Michael Häusler, Johannes Hörmann, Mohsen Sadeqi Moqadam, Günther J. Redhammer, Ingeborg Sellæg Ellingsen, Mir Mehraj Ud Din, Per Erik Vullum, Roman Zettl, Timo Danner, Arnulf Latz, Volker Hennige, Roland Brunner, Daniel Rettenwander
{"title":"浆料铸造Li₆PS₅Cl胶带的单轴致密化:粒度分布和致密化压力的作用。","authors":"Quoc-Anh Tran,&nbsp;Meenal Agrawal,&nbsp;Michael Häusler,&nbsp;Johannes Hörmann,&nbsp;Mohsen Sadeqi Moqadam,&nbsp;Günther J. Redhammer,&nbsp;Ingeborg Sellæg Ellingsen,&nbsp;Mir Mehraj Ud Din,&nbsp;Per Erik Vullum,&nbsp;Roman Zettl,&nbsp;Timo Danner,&nbsp;Arnulf Latz,&nbsp;Volker Hennige,&nbsp;Roland Brunner,&nbsp;Daniel Rettenwander","doi":"10.1002/adma.202501592","DOIUrl":null,"url":null,"abstract":"<p>Solid-state batteries are transformative solutions for electric vehicles, offering superior energy density and safety. Sulfide-based solid electrolytes like Li₆PS₅Cl (LPSCl) combine high ionic conductivity and mechanical adaptability, but challenges remain in scaling up high-performance separator tapes due to particle size distribution (PSD) and processing constraints. This study investigates the uni-axial densification of slurry-casted LPSCl tapes, focusing on PSD refinement and compaction pressure. Wet milling has been identified to effectively reduce PSD to submicron levels while preserving structural integrity and near-pristine conductivity. A critical pressure threshold (≈350 MPa) for tape-casted LPSCl slurries (2.5% hydrated poly(acrylonitrile-co-butadiene)) is identified, where ionic conductivity peaks due to particle fusion and the formation of conductive networks. However, open porosity (≈30%), particularly along the densification direction, and surface irregularities persist. These structural issues have significant implications for battery performance. For example, surface roughness and interfacial voids lead to localized current focusing, with current densities exceeding applied values by over 20 times. Percolating porosity accelerates dendritic failure modes, undermining stability and limiting cycling rates. This work underscores the need for optimized powder processing and densification techniques to enhance scalability and performance, advancing LPSCl-based separators for the practical adoption of solid-state batteries in electric vehicles and other high-energy applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 30","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202501592","citationCount":"0","resultStr":"{\"title\":\"Uni-Axial Densification of Slurry-Casted Li₆PS₅Cl Tapes: The Role of Particle Size Distribution and Densification Pressure\",\"authors\":\"Quoc-Anh Tran,&nbsp;Meenal Agrawal,&nbsp;Michael Häusler,&nbsp;Johannes Hörmann,&nbsp;Mohsen Sadeqi Moqadam,&nbsp;Günther J. Redhammer,&nbsp;Ingeborg Sellæg Ellingsen,&nbsp;Mir Mehraj Ud Din,&nbsp;Per Erik Vullum,&nbsp;Roman Zettl,&nbsp;Timo Danner,&nbsp;Arnulf Latz,&nbsp;Volker Hennige,&nbsp;Roland Brunner,&nbsp;Daniel Rettenwander\",\"doi\":\"10.1002/adma.202501592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state batteries are transformative solutions for electric vehicles, offering superior energy density and safety. Sulfide-based solid electrolytes like Li₆PS₅Cl (LPSCl) combine high ionic conductivity and mechanical adaptability, but challenges remain in scaling up high-performance separator tapes due to particle size distribution (PSD) and processing constraints. This study investigates the uni-axial densification of slurry-casted LPSCl tapes, focusing on PSD refinement and compaction pressure. Wet milling has been identified to effectively reduce PSD to submicron levels while preserving structural integrity and near-pristine conductivity. A critical pressure threshold (≈350 MPa) for tape-casted LPSCl slurries (2.5% hydrated poly(acrylonitrile-co-butadiene)) is identified, where ionic conductivity peaks due to particle fusion and the formation of conductive networks. However, open porosity (≈30%), particularly along the densification direction, and surface irregularities persist. These structural issues have significant implications for battery performance. For example, surface roughness and interfacial voids lead to localized current focusing, with current densities exceeding applied values by over 20 times. Percolating porosity accelerates dendritic failure modes, undermining stability and limiting cycling rates. This work underscores the need for optimized powder processing and densification techniques to enhance scalability and performance, advancing LPSCl-based separators for the practical adoption of solid-state batteries in electric vehicles and other high-energy applications.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 30\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202501592\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202501592\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202501592","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态电池是电动汽车的变革性解决方案,具有卓越的能量密度和安全性。像Li₆PS₅Cl (LPSCl)这样的硫化物基固体电解质结合了高离子电导率和机械适应性,但由于粒度分布(PSD)和加工限制,在扩大高性能分离带方面仍然存在挑战。本研究探讨了单轴密度的浆料铸造LPSCl带,重点是PSD细化和压实压力。已经确定湿磨可以有效地将PSD降低到亚微米水平,同时保持结构完整性和接近原始的导电性。胶带铸造LPSCl浆料(2.5%水合聚(丙烯腈-共丁二烯))的临界压力阈值(≈350 MPa)被确定,其中离子电导率由于颗粒融合和导电网络的形成而达到峰值。然而,开放孔隙率(≈30%),特别是沿着致密化方向,表面不规则性仍然存在。这些结构问题对电池性能有重大影响。例如,表面粗糙度和界面空隙导致局部电流聚焦,电流密度超过应用值20倍以上。渗透孔隙加速了枝晶破坏模式,破坏了稳定性并限制了循环速率。这项工作强调了优化粉末加工和致密化技术的必要性,以提高可扩展性和性能,推进基于lpscl的分离器在电动汽车和其他高能应用中固态电池的实际采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uni-Axial Densification of Slurry-Casted Li₆PS₅Cl Tapes: The Role of Particle Size Distribution and Densification Pressure

Uni-Axial Densification of Slurry-Casted Li₆PS₅Cl Tapes: The Role of Particle Size Distribution and Densification Pressure

Solid-state batteries are transformative solutions for electric vehicles, offering superior energy density and safety. Sulfide-based solid electrolytes like Li₆PS₅Cl (LPSCl) combine high ionic conductivity and mechanical adaptability, but challenges remain in scaling up high-performance separator tapes due to particle size distribution (PSD) and processing constraints. This study investigates the uni-axial densification of slurry-casted LPSCl tapes, focusing on PSD refinement and compaction pressure. Wet milling has been identified to effectively reduce PSD to submicron levels while preserving structural integrity and near-pristine conductivity. A critical pressure threshold (≈350 MPa) for tape-casted LPSCl slurries (2.5% hydrated poly(acrylonitrile-co-butadiene)) is identified, where ionic conductivity peaks due to particle fusion and the formation of conductive networks. However, open porosity (≈30%), particularly along the densification direction, and surface irregularities persist. These structural issues have significant implications for battery performance. For example, surface roughness and interfacial voids lead to localized current focusing, with current densities exceeding applied values by over 20 times. Percolating porosity accelerates dendritic failure modes, undermining stability and limiting cycling rates. This work underscores the need for optimized powder processing and densification techniques to enhance scalability and performance, advancing LPSCl-based separators for the practical adoption of solid-state batteries in electric vehicles and other high-energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信