Shixian Liu,Tian Yu,Libing Song,Kourosh Kalantar-Zadeh,Guozhen Liu
{"title":"用于宫颈癌即时筛查的微流控纸基分析设备的CRISPR/Cas","authors":"Shixian Liu,Tian Yu,Libing Song,Kourosh Kalantar-Zadeh,Guozhen Liu","doi":"10.1021/acssensors.5c00863","DOIUrl":null,"url":null,"abstract":"Highly sensitive point-of-care early screening for high-risk human papillomavirus (HPV) infections is urgently needed, particularly in resource-limited settings. Nucleic acid amplification methods, especially CRISPR/Cas-based biosensors, have emerged as promising tools for sensitive HPV detection; however, current approaches typically rely on tedious tube-based formats coupled with lateral flow assays for signal readout in point-of-care testing (POCT). Here, we developed customized microfluidic paper-based analytical devices (μPADs) with valves that seamlessly integrated recombinase polymerase amplification (RPA) with CRISPR/Cas12a biosensing (RPA-CRISPR/Cas12a) on the filter paper substrate. This innovation achieved sensitive and cost-effective high-risk HPV detection in POCT. The RPA-CRISPR/Cas12a system with a linear reporter on μPADs, enabled fluorescence detection of the E7 gene, achieving a sensitivity of 1 pM at approximately 1 h. The sensitivity was further enhanced by introducing a circular reporter into the fluorescence-based RPA-CRISPR/Cas12a system on μPADs, enabling detection of the E7 gene with a detection limit of 1 fM and an assay time of 35 min. The system was validated using 50 cervical swab clinical samples, demonstrating 95% sensitivity and 100% specificity when compared to qPCR. This sample-to-answer detection platform holds significant promise for early screening of high-risk HPV infections in point-of-care scenarios.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"41 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas on Microfluidic Paper-Based Analytical Devices for Point-of-Care Screening of Cervical Cancer.\",\"authors\":\"Shixian Liu,Tian Yu,Libing Song,Kourosh Kalantar-Zadeh,Guozhen Liu\",\"doi\":\"10.1021/acssensors.5c00863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly sensitive point-of-care early screening for high-risk human papillomavirus (HPV) infections is urgently needed, particularly in resource-limited settings. Nucleic acid amplification methods, especially CRISPR/Cas-based biosensors, have emerged as promising tools for sensitive HPV detection; however, current approaches typically rely on tedious tube-based formats coupled with lateral flow assays for signal readout in point-of-care testing (POCT). Here, we developed customized microfluidic paper-based analytical devices (μPADs) with valves that seamlessly integrated recombinase polymerase amplification (RPA) with CRISPR/Cas12a biosensing (RPA-CRISPR/Cas12a) on the filter paper substrate. This innovation achieved sensitive and cost-effective high-risk HPV detection in POCT. The RPA-CRISPR/Cas12a system with a linear reporter on μPADs, enabled fluorescence detection of the E7 gene, achieving a sensitivity of 1 pM at approximately 1 h. The sensitivity was further enhanced by introducing a circular reporter into the fluorescence-based RPA-CRISPR/Cas12a system on μPADs, enabling detection of the E7 gene with a detection limit of 1 fM and an assay time of 35 min. The system was validated using 50 cervical swab clinical samples, demonstrating 95% sensitivity and 100% specificity when compared to qPCR. This sample-to-answer detection platform holds significant promise for early screening of high-risk HPV infections in point-of-care scenarios.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00863\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00863","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
CRISPR/Cas on Microfluidic Paper-Based Analytical Devices for Point-of-Care Screening of Cervical Cancer.
Highly sensitive point-of-care early screening for high-risk human papillomavirus (HPV) infections is urgently needed, particularly in resource-limited settings. Nucleic acid amplification methods, especially CRISPR/Cas-based biosensors, have emerged as promising tools for sensitive HPV detection; however, current approaches typically rely on tedious tube-based formats coupled with lateral flow assays for signal readout in point-of-care testing (POCT). Here, we developed customized microfluidic paper-based analytical devices (μPADs) with valves that seamlessly integrated recombinase polymerase amplification (RPA) with CRISPR/Cas12a biosensing (RPA-CRISPR/Cas12a) on the filter paper substrate. This innovation achieved sensitive and cost-effective high-risk HPV detection in POCT. The RPA-CRISPR/Cas12a system with a linear reporter on μPADs, enabled fluorescence detection of the E7 gene, achieving a sensitivity of 1 pM at approximately 1 h. The sensitivity was further enhanced by introducing a circular reporter into the fluorescence-based RPA-CRISPR/Cas12a system on μPADs, enabling detection of the E7 gene with a detection limit of 1 fM and an assay time of 35 min. The system was validated using 50 cervical swab clinical samples, demonstrating 95% sensitivity and 100% specificity when compared to qPCR. This sample-to-answer detection platform holds significant promise for early screening of high-risk HPV infections in point-of-care scenarios.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.