Xiuqiang Li,Guangxin Lv,Yinglong Hu,Yu-Hsuan Tsao,Renjiu Hu,Zhiting Tian,Kejun Liu,Hao Ma
{"title":"双面聚酰胺薄膜的高透厚导热性。","authors":"Xiuqiang Li,Guangxin Lv,Yinglong Hu,Yu-Hsuan Tsao,Renjiu Hu,Zhiting Tian,Kejun Liu,Hao Ma","doi":"10.1021/acs.nanolett.5c01036","DOIUrl":null,"url":null,"abstract":"High thermal conductivity is essential for polymer applications such as electronic chip encapsulation, where efficient heat dissipation ensures system functionality and reliability. Here, we introduce a novel strategy to enhance through-plane thermal conductivity in 2D covalent organic frameworks (COFs). A highly crystalline edge-on 2D polyamide (v2DPA) film achieves a thermal conductivity of 1.16 ± 0.05 W/(mK) at 310 K, surpassing the previous record (1.03 W/(mK) in COF-5 [Evans et al. Nat. Mater. 2021, 20, 1142]) and aligning with molecular dynamics predictions (1.11 ± 0.07 W/(mK)). This value is nearly three times higher than that of bulk PA (0.34 ± 0.03 W/(mK)). Phonon dispersion calculations attribute this enhancement to strong covalent bonding, increasing phonon lifetimes, and group velocities. Our findings highlight the effectiveness of orienting 2D polymer and layer-stacked 2D COF films in an edge-on configuration to improve through-thickness thermal conductivity, offering a promising pathway for their integration into electronic thermal management applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Through-Thickness Thermal Conductivity in an Edge-On Two-Dimensional Polyamide Thin Film.\",\"authors\":\"Xiuqiang Li,Guangxin Lv,Yinglong Hu,Yu-Hsuan Tsao,Renjiu Hu,Zhiting Tian,Kejun Liu,Hao Ma\",\"doi\":\"10.1021/acs.nanolett.5c01036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High thermal conductivity is essential for polymer applications such as electronic chip encapsulation, where efficient heat dissipation ensures system functionality and reliability. Here, we introduce a novel strategy to enhance through-plane thermal conductivity in 2D covalent organic frameworks (COFs). A highly crystalline edge-on 2D polyamide (v2DPA) film achieves a thermal conductivity of 1.16 ± 0.05 W/(mK) at 310 K, surpassing the previous record (1.03 W/(mK) in COF-5 [Evans et al. Nat. Mater. 2021, 20, 1142]) and aligning with molecular dynamics predictions (1.11 ± 0.07 W/(mK)). This value is nearly three times higher than that of bulk PA (0.34 ± 0.03 W/(mK)). Phonon dispersion calculations attribute this enhancement to strong covalent bonding, increasing phonon lifetimes, and group velocities. Our findings highlight the effectiveness of orienting 2D polymer and layer-stacked 2D COF films in an edge-on configuration to improve through-thickness thermal conductivity, offering a promising pathway for their integration into electronic thermal management applications.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01036\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01036","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High Through-Thickness Thermal Conductivity in an Edge-On Two-Dimensional Polyamide Thin Film.
High thermal conductivity is essential for polymer applications such as electronic chip encapsulation, where efficient heat dissipation ensures system functionality and reliability. Here, we introduce a novel strategy to enhance through-plane thermal conductivity in 2D covalent organic frameworks (COFs). A highly crystalline edge-on 2D polyamide (v2DPA) film achieves a thermal conductivity of 1.16 ± 0.05 W/(mK) at 310 K, surpassing the previous record (1.03 W/(mK) in COF-5 [Evans et al. Nat. Mater. 2021, 20, 1142]) and aligning with molecular dynamics predictions (1.11 ± 0.07 W/(mK)). This value is nearly three times higher than that of bulk PA (0.34 ± 0.03 W/(mK)). Phonon dispersion calculations attribute this enhancement to strong covalent bonding, increasing phonon lifetimes, and group velocities. Our findings highlight the effectiveness of orienting 2D polymer and layer-stacked 2D COF films in an edge-on configuration to improve through-thickness thermal conductivity, offering a promising pathway for their integration into electronic thermal management applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.