开尔文探针力显微镜揭示CdS/BiOBr S-scheme异质结光催化剂的空间分辨电荷转移机制。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheng Meng,Jianjun Zhang,Haoyu Long,Hermenegildo García,Liuyang Zhang,Bicheng Zhu,Jiaguo Yu
{"title":"开尔文探针力显微镜揭示CdS/BiOBr S-scheme异质结光催化剂的空间分辨电荷转移机制。","authors":"Zheng Meng,Jianjun Zhang,Haoyu Long,Hermenegildo García,Liuyang Zhang,Bicheng Zhu,Jiaguo Yu","doi":"10.1002/anie.202505456","DOIUrl":null,"url":null,"abstract":"S-scheme heterojunctions hold great promise for photocatalysis, yet a comprehensive understanding of their charge-transfer mechanisms remains limited. While time-resolved techniques have provided valuable insights, the spatial resolution of charge transfer at the material surface remains underexplored. Here, we employ Kelvin probe force microscopy (KPFM) to investigate the charge-transfer dynamics in S-scheme heterojunctions, revealing spatially resolved details. Our findings show that upon illumination, the Fermi level (Ef) of n-type semiconductors increases, but a built-in electric field (IEF) persists within the heterojunction. Electrons accumulate on the surface of the reduction semiconductor (RS), resulting in a surface photovoltage (SPV) lower than that of the individual semiconductor, while holes accumulate on the oxidation semiconductor (OS) surface, producing an SPV higher than that of the bare material. The S-scheme heterojunction leads to a remarkable increase in charge separation, with 11 additional photogenerated electrons and 3,722 additional holes compared to the bare CdS and BiOBr. These results offer critical insights into the spatially resolved charge-transfer mechanisms of S-scheme heterojunctions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"14 1","pages":"e202505456"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kelvin Probe Force Microscopy Reveals Spatially Resolved Charge-Transfer Mechanism in CdS/BiOBr S-scheme Heterojunction Photocatalyst.\",\"authors\":\"Zheng Meng,Jianjun Zhang,Haoyu Long,Hermenegildo García,Liuyang Zhang,Bicheng Zhu,Jiaguo Yu\",\"doi\":\"10.1002/anie.202505456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S-scheme heterojunctions hold great promise for photocatalysis, yet a comprehensive understanding of their charge-transfer mechanisms remains limited. While time-resolved techniques have provided valuable insights, the spatial resolution of charge transfer at the material surface remains underexplored. Here, we employ Kelvin probe force microscopy (KPFM) to investigate the charge-transfer dynamics in S-scheme heterojunctions, revealing spatially resolved details. Our findings show that upon illumination, the Fermi level (Ef) of n-type semiconductors increases, but a built-in electric field (IEF) persists within the heterojunction. Electrons accumulate on the surface of the reduction semiconductor (RS), resulting in a surface photovoltage (SPV) lower than that of the individual semiconductor, while holes accumulate on the oxidation semiconductor (OS) surface, producing an SPV higher than that of the bare material. The S-scheme heterojunction leads to a remarkable increase in charge separation, with 11 additional photogenerated electrons and 3,722 additional holes compared to the bare CdS and BiOBr. These results offer critical insights into the spatially resolved charge-transfer mechanisms of S-scheme heterojunctions.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"14 1\",\"pages\":\"e202505456\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505456\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505456","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

s方案异质结在光催化方面具有很大的前景,但对其电荷转移机制的全面理解仍然有限。虽然时间分辨技术提供了有价值的见解,但材料表面电荷转移的空间分辨仍未得到充分探索。在这里,我们使用开尔文探针力显微镜(KPFM)来研究s型异质结中的电荷转移动力学,揭示空间分辨的细节。我们的研究结果表明,在光照下,n型半导体的费米能级(Ef)增加,但异质结内的内置电场(IEF)仍然存在。电子在还原半导体(RS)表面积累,导致表面光电压(SPV)低于单个半导体,而空穴在氧化半导体(OS)表面积累,产生高于裸材料的SPV。s方案异质结导致电荷分离显著增加,与裸CdS和BiOBr相比,光生电子增加了11个,空穴增加了3722个。这些结果为s型异质结的空间分辨电荷转移机制提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kelvin Probe Force Microscopy Reveals Spatially Resolved Charge-Transfer Mechanism in CdS/BiOBr S-scheme Heterojunction Photocatalyst.
S-scheme heterojunctions hold great promise for photocatalysis, yet a comprehensive understanding of their charge-transfer mechanisms remains limited. While time-resolved techniques have provided valuable insights, the spatial resolution of charge transfer at the material surface remains underexplored. Here, we employ Kelvin probe force microscopy (KPFM) to investigate the charge-transfer dynamics in S-scheme heterojunctions, revealing spatially resolved details. Our findings show that upon illumination, the Fermi level (Ef) of n-type semiconductors increases, but a built-in electric field (IEF) persists within the heterojunction. Electrons accumulate on the surface of the reduction semiconductor (RS), resulting in a surface photovoltage (SPV) lower than that of the individual semiconductor, while holes accumulate on the oxidation semiconductor (OS) surface, producing an SPV higher than that of the bare material. The S-scheme heterojunction leads to a remarkable increase in charge separation, with 11 additional photogenerated electrons and 3,722 additional holes compared to the bare CdS and BiOBr. These results offer critical insights into the spatially resolved charge-transfer mechanisms of S-scheme heterojunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信