Sharath Kandambeth,Rajesh Kancherla,Kuntal Pal,Taslim Melliti,Mostafa Zeama,Vinayak S Kale,Issatay Nadinov,Abdulaziz M Alali,Osama Shekhah,Omar F Mohammed,Magnus Rueping,Mohamed Eddaoudi
{"title":"铈-萘杂酚儿茶酚酸MOF作为烷烃选择性功能化的非均相光催化剂。","authors":"Sharath Kandambeth,Rajesh Kancherla,Kuntal Pal,Taslim Melliti,Mostafa Zeama,Vinayak S Kale,Issatay Nadinov,Abdulaziz M Alali,Osama Shekhah,Omar F Mohammed,Magnus Rueping,Mohamed Eddaoudi","doi":"10.1002/anie.202503328","DOIUrl":null,"url":null,"abstract":"In this work we have successfully synthesized a series of novel semiconducting 2D catecholate metal-organic frameworks (MOFs) based on naphthazarin ligands by utilizing unraveled metal-acetyl acetonate linkage chemistry. The synthesized Ce-Naph MOF exhibited excellent light absorption properties and chemical stability across various solvents. Its insoluble and stable framework, combined with an optimal band gap, enabled its use as a photocatalyst for organic transformations. For the first time, Ce-Naph MOF is explored as a heterogeneous catalyst for photocatalytic applications specifically for the selective C-H amination of alkanes, achieving yields of up to 89% under ambient conditions. We propose that the initial metal-to-ligand charge transfer in Ce-Naph MOF, promoted by light, is essential for forming an active alkoxy-Ce(IV)-species. This species subsequently undergoes ligand-to-metal charge transfer to generate the alkoxy radical, which acts as a hydrogen atom transfer reagent to activate alkanes. Furthermore, Ce-Naph MOF demonstrated long-term cyclic stability, maintaining its catalytic activity and structural integrity over five cycles, highlighting its durability as a heterogeneous catalyst. We are confident that this straightforward and practical methodology opens new avenues for industrial applications, significantly advancing the fields of metal catalysis, photocatalysis, and sustainable chemistry.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"17 1","pages":"e202503328"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cerium-Naphthazarin Catecholate MOF as a Heterogeneous Photocatalyst for Selective Functionalization of Alkanes.\",\"authors\":\"Sharath Kandambeth,Rajesh Kancherla,Kuntal Pal,Taslim Melliti,Mostafa Zeama,Vinayak S Kale,Issatay Nadinov,Abdulaziz M Alali,Osama Shekhah,Omar F Mohammed,Magnus Rueping,Mohamed Eddaoudi\",\"doi\":\"10.1002/anie.202503328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we have successfully synthesized a series of novel semiconducting 2D catecholate metal-organic frameworks (MOFs) based on naphthazarin ligands by utilizing unraveled metal-acetyl acetonate linkage chemistry. The synthesized Ce-Naph MOF exhibited excellent light absorption properties and chemical stability across various solvents. Its insoluble and stable framework, combined with an optimal band gap, enabled its use as a photocatalyst for organic transformations. For the first time, Ce-Naph MOF is explored as a heterogeneous catalyst for photocatalytic applications specifically for the selective C-H amination of alkanes, achieving yields of up to 89% under ambient conditions. We propose that the initial metal-to-ligand charge transfer in Ce-Naph MOF, promoted by light, is essential for forming an active alkoxy-Ce(IV)-species. This species subsequently undergoes ligand-to-metal charge transfer to generate the alkoxy radical, which acts as a hydrogen atom transfer reagent to activate alkanes. Furthermore, Ce-Naph MOF demonstrated long-term cyclic stability, maintaining its catalytic activity and structural integrity over five cycles, highlighting its durability as a heterogeneous catalyst. We are confident that this straightforward and practical methodology opens new avenues for industrial applications, significantly advancing the fields of metal catalysis, photocatalysis, and sustainable chemistry.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"17 1\",\"pages\":\"e202503328\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202503328\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503328","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Cerium-Naphthazarin Catecholate MOF as a Heterogeneous Photocatalyst for Selective Functionalization of Alkanes.
In this work we have successfully synthesized a series of novel semiconducting 2D catecholate metal-organic frameworks (MOFs) based on naphthazarin ligands by utilizing unraveled metal-acetyl acetonate linkage chemistry. The synthesized Ce-Naph MOF exhibited excellent light absorption properties and chemical stability across various solvents. Its insoluble and stable framework, combined with an optimal band gap, enabled its use as a photocatalyst for organic transformations. For the first time, Ce-Naph MOF is explored as a heterogeneous catalyst for photocatalytic applications specifically for the selective C-H amination of alkanes, achieving yields of up to 89% under ambient conditions. We propose that the initial metal-to-ligand charge transfer in Ce-Naph MOF, promoted by light, is essential for forming an active alkoxy-Ce(IV)-species. This species subsequently undergoes ligand-to-metal charge transfer to generate the alkoxy radical, which acts as a hydrogen atom transfer reagent to activate alkanes. Furthermore, Ce-Naph MOF demonstrated long-term cyclic stability, maintaining its catalytic activity and structural integrity over five cycles, highlighting its durability as a heterogeneous catalyst. We are confident that this straightforward and practical methodology opens new avenues for industrial applications, significantly advancing the fields of metal catalysis, photocatalysis, and sustainable chemistry.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.