Jibo Qin,Jianchi Zhou,Jin Ma,Shuang Li,Awu Zhou,Linhua Xie,Yibo Dou,Yuanjian Zhang
{"title":"金属-有机骨架中活性位点的破缺对称性对聚酯塑料高效光催化增值的影响。","authors":"Jibo Qin,Jianchi Zhou,Jin Ma,Shuang Li,Awu Zhou,Linhua Xie,Yibo Dou,Yuanjian Zhang","doi":"10.1002/anie.202505786","DOIUrl":null,"url":null,"abstract":"Chemical upcycling of waste plastics offers a promising way toward achieving a circular economy and alleviating environmental pollution but remains a huge challenge. Inspired by hydrolase enzymes and aiming to overcome their intrinsic limitations, we put forward a design principle for an innovative nanozyme featuring asymmetric metal sites. This nanozyme functions as photocatalyst enabling sustainable valorization of polyester plastics. As a proof of concept, an asymmetric ligand substitution strategy is developed to construct metal-organic frameworks (MOFs) that defective MIL-101(Fe) (D-MIL-101) with asymmetric Fe3-δ/Fe3+ (0< δ <1) sites. The differential electronic configurations inherent to adjacent Fe3-δ/Fe3+ sites endow a high photocatalytic activity for the valorization of polyester plastic. Accordingly, the ester bonds of polyesters can be preferentially cleaved, contributing to the low energy barrier of upcycling plastics. As a result, the D-MIL-101 achieves a high monomer yield with terephthalic acid of ~93.9% and ethylene glycol of ~87.1% for photocatalytic valorization of poly (ethylene terephthalate) (PET), beyond the efficiency of natural enzyme and state-of-the-art photocatalysts. In addition, such a D-MIL-101 is demonstrated to be feasible for the valorization of various real-world polyester plastic wastes in a flow photocatalysis system.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"128 1","pages":"e202505786"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking Symmetry of Active Sites in Metal-Organic Frameworks for Efficient Photocatalytic Valorization of Polyester Plastics.\",\"authors\":\"Jibo Qin,Jianchi Zhou,Jin Ma,Shuang Li,Awu Zhou,Linhua Xie,Yibo Dou,Yuanjian Zhang\",\"doi\":\"10.1002/anie.202505786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical upcycling of waste plastics offers a promising way toward achieving a circular economy and alleviating environmental pollution but remains a huge challenge. Inspired by hydrolase enzymes and aiming to overcome their intrinsic limitations, we put forward a design principle for an innovative nanozyme featuring asymmetric metal sites. This nanozyme functions as photocatalyst enabling sustainable valorization of polyester plastics. As a proof of concept, an asymmetric ligand substitution strategy is developed to construct metal-organic frameworks (MOFs) that defective MIL-101(Fe) (D-MIL-101) with asymmetric Fe3-δ/Fe3+ (0< δ <1) sites. The differential electronic configurations inherent to adjacent Fe3-δ/Fe3+ sites endow a high photocatalytic activity for the valorization of polyester plastic. Accordingly, the ester bonds of polyesters can be preferentially cleaved, contributing to the low energy barrier of upcycling plastics. As a result, the D-MIL-101 achieves a high monomer yield with terephthalic acid of ~93.9% and ethylene glycol of ~87.1% for photocatalytic valorization of poly (ethylene terephthalate) (PET), beyond the efficiency of natural enzyme and state-of-the-art photocatalysts. In addition, such a D-MIL-101 is demonstrated to be feasible for the valorization of various real-world polyester plastic wastes in a flow photocatalysis system.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"128 1\",\"pages\":\"e202505786\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202505786\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202505786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Breaking Symmetry of Active Sites in Metal-Organic Frameworks for Efficient Photocatalytic Valorization of Polyester Plastics.
Chemical upcycling of waste plastics offers a promising way toward achieving a circular economy and alleviating environmental pollution but remains a huge challenge. Inspired by hydrolase enzymes and aiming to overcome their intrinsic limitations, we put forward a design principle for an innovative nanozyme featuring asymmetric metal sites. This nanozyme functions as photocatalyst enabling sustainable valorization of polyester plastics. As a proof of concept, an asymmetric ligand substitution strategy is developed to construct metal-organic frameworks (MOFs) that defective MIL-101(Fe) (D-MIL-101) with asymmetric Fe3-δ/Fe3+ (0< δ <1) sites. The differential electronic configurations inherent to adjacent Fe3-δ/Fe3+ sites endow a high photocatalytic activity for the valorization of polyester plastic. Accordingly, the ester bonds of polyesters can be preferentially cleaved, contributing to the low energy barrier of upcycling plastics. As a result, the D-MIL-101 achieves a high monomer yield with terephthalic acid of ~93.9% and ethylene glycol of ~87.1% for photocatalytic valorization of poly (ethylene terephthalate) (PET), beyond the efficiency of natural enzyme and state-of-the-art photocatalysts. In addition, such a D-MIL-101 is demonstrated to be feasible for the valorization of various real-world polyester plastic wastes in a flow photocatalysis system.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.