缓解抗生素耐药性的最优控制策略:整合病毒动力学以增强干预设计。

IF 1.9 4区 数学 Q2 BIOLOGY
Zainab O. Dere , N.G. Cogan , Bhargav R. Karamched
{"title":"缓解抗生素耐药性的最优控制策略:整合病毒动力学以增强干预设计。","authors":"Zainab O. Dere ,&nbsp;N.G. Cogan ,&nbsp;Bhargav R. Karamched","doi":"10.1016/j.mbs.2025.109464","DOIUrl":null,"url":null,"abstract":"<div><div>Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to control bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most prevalent biological agent on earth. This paper presents a comprehensive model capturing the dynamics of wild-type bacteria <span><math><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, antibiotic-resistant bacteria <span><math><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, and virus-infected (<span><math><mi>I</mi></math></span>) bacteria population, incorporating virus inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death rates, mutation probabilities and incorporates infection dynamics via contact with a virus. We employ an optimal control approach to study the influence of virus inclusion on bacterial population dynamics. Through numerical simulations, we establish insights into the stability of various system equilibria and bacterial population responses to varying infection rates. By examining the equilibria, we reveal the impact of virus inclusion on population trajectories, describe a medical intervention for antibiotic-resistant bacterial infections through the lense of optimal control theory, and discuss how to implement it in a clinical setting. Our findings underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding light on subtle yet influential dynamics in bacterial ecosystems.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"386 ","pages":"Article 109464"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design\",\"authors\":\"Zainab O. Dere ,&nbsp;N.G. Cogan ,&nbsp;Bhargav R. Karamched\",\"doi\":\"10.1016/j.mbs.2025.109464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to control bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most prevalent biological agent on earth. This paper presents a comprehensive model capturing the dynamics of wild-type bacteria <span><math><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, antibiotic-resistant bacteria <span><math><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, and virus-infected (<span><math><mi>I</mi></math></span>) bacteria population, incorporating virus inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death rates, mutation probabilities and incorporates infection dynamics via contact with a virus. We employ an optimal control approach to study the influence of virus inclusion on bacterial population dynamics. Through numerical simulations, we establish insights into the stability of various system equilibria and bacterial population responses to varying infection rates. By examining the equilibria, we reveal the impact of virus inclusion on population trajectories, describe a medical intervention for antibiotic-resistant bacterial infections through the lense of optimal control theory, and discuss how to implement it in a clinical setting. Our findings underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding light on subtle yet influential dynamics in bacterial ecosystems.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"386 \",\"pages\":\"Article 109464\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425000902\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000902","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于全球抗生素耐药性的增加,必须开发新的有效策略来治疗对一线或二线抗生素无反应的细菌。一种利用噬菌体治疗控制细菌数量的新方法。噬菌体病毒复制并感染细菌细胞,被认为是地球上最普遍的生物制剂。本文提出了一个综合模型,捕捉野生型细菌(S),抗生素耐药细菌(R)和病毒感染细菌(I)群体的动态,包括病毒包络性。我们的模型整合了控制细菌出生率、死亡率、突变概率的生物学相关参数,并通过与病毒接触整合了感染动态。我们采用最优控制方法来研究病毒包涵对细菌种群动态的影响。通过数值模拟,我们建立了对各种系统平衡的稳定性和细菌种群对不同感染率的反应的见解。通过研究均衡,我们揭示了病毒包涵对种群轨迹的影响,通过最优控制理论描述了对耐药细菌感染的医疗干预,并讨论了如何在临床环境中实施它。我们的发现强调了在抗生素耐药性研究中考虑病毒包涵的必要性,揭示了细菌生态系统中微妙但有影响的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design
Given the global increase in antibiotic resistance, new effective strategies must be developed to treat bacteria that do not respond to first or second line antibiotics. One novel method uses bacterial phage therapy to control bacterial populations. Phage viruses replicate and infect bacterial cells and are regarded as the most prevalent biological agent on earth. This paper presents a comprehensive model capturing the dynamics of wild-type bacteria (S), antibiotic-resistant bacteria (R), and virus-infected (I) bacteria population, incorporating virus inclusion. Our model integrates biologically relevant parameters governing bacterial birth rates, death rates, mutation probabilities and incorporates infection dynamics via contact with a virus. We employ an optimal control approach to study the influence of virus inclusion on bacterial population dynamics. Through numerical simulations, we establish insights into the stability of various system equilibria and bacterial population responses to varying infection rates. By examining the equilibria, we reveal the impact of virus inclusion on population trajectories, describe a medical intervention for antibiotic-resistant bacterial infections through the lense of optimal control theory, and discuss how to implement it in a clinical setting. Our findings underscore the necessity of considering virus inclusion in antibiotic resistance studies, shedding light on subtle yet influential dynamics in bacterial ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信