Quanhao Sun, Xinyue Cui, Dong Yin, Juan Li, Jiarui Li, Likun Du
{"title":"不依赖ucp1的产热分子机制:无用循环在能量耗散中的作用。","authors":"Quanhao Sun, Xinyue Cui, Dong Yin, Juan Li, Jiarui Li, Likun Du","doi":"10.1007/s13105-025-01090-x","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation.\",\"authors\":\"Quanhao Sun, Xinyue Cui, Dong Yin, Juan Li, Jiarui Li, Likun Du\",\"doi\":\"10.1007/s13105-025-01090-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-025-01090-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01090-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
脂肪组织产热已成为代谢性疾病治疗的一个重要研究重点,特别是通过线粒体解偶联,氧化营养物质产生热量,而不是合成ATP。解偶联蛋白1 (Uncoupling protein 1, UCP1)作为介导非寒颤产热(non-发抖thermogenesis, NST)的核心蛋白受到了广泛关注。然而,最近的研究表明,能量耗散也可以通过不依赖ucp1的产热发生,部分由无效代谢循环驱动。这些循环包括ATP耗竭和可逆能量反应,导致无用的能量消耗。与经典的ucp1介导的产热不同,无效循环并不局限于棕色和米色脂肪组织,这表明治疗靶点范围更广。这些发现为针对这些途径增强代谢健康开辟了新的途径。这篇综述探讨了主要代谢器官(脂肪组织、肝脏和骨骼肌)在无效产热循环中的特点和区别。它进一步阐述了钙、肌酸和脂质循环的细胞和分子机制,强调了它们的优势、局限性和产热作用之外的作用。
Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation.
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.