kagome Heisenberg反铁磁体YCu3(OH)6.5Br2.5的研究进展

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Xun Chen, HaiJun Liao, Yuesheng Li
{"title":"kagome Heisenberg反铁磁体YCu3(OH)6.5Br2.5的研究进展","authors":"Xun Chen, HaiJun Liao, Yuesheng Li","doi":"10.1088/1361-648X/add9dc","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum spin liquids (QSLs), first proposed by P. W. Anderson back in 1973 through the resonating-valence-bond state, are expected to be central to understanding high-temperature superconductivity and advancing topological quantum computation. However, conclusive experimental evidence for QSLs remains elusive, largely due to two factors: first, most two-dimensional strongly frustrated spin models are not exactly solvable, leading to inconsistent results across numerical methods; second, real materials often include spin-spin interaction perturbations that disrupt the fragile QSL ground state. This review focuses on the kagome Heisenberg antiferromagnet (KHA), which is considered a promising experimental realization of QSLs. Among the existing KHA candidates,&#xD;YCu<sub>3</sub>(OH)<sub>6.5</sub>Br<sub>2.5</sub>(YCOB) stands out as the most promising, showing no conventional magnetic ordering down to 50 mK despite a strong antiferromagnetic coupling of ∼ 60 K. This paper reviews key experimental and theoretical studies on YCOB, addressing ongoing challenges and future directions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The kagome Heisenberg antiferromagnet YCu<sub>3</sub>(OH)<sub>6.5</sub>Br<sub>2.5</sub>: A review.\",\"authors\":\"Xun Chen, HaiJun Liao, Yuesheng Li\",\"doi\":\"10.1088/1361-648X/add9dc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum spin liquids (QSLs), first proposed by P. W. Anderson back in 1973 through the resonating-valence-bond state, are expected to be central to understanding high-temperature superconductivity and advancing topological quantum computation. However, conclusive experimental evidence for QSLs remains elusive, largely due to two factors: first, most two-dimensional strongly frustrated spin models are not exactly solvable, leading to inconsistent results across numerical methods; second, real materials often include spin-spin interaction perturbations that disrupt the fragile QSL ground state. This review focuses on the kagome Heisenberg antiferromagnet (KHA), which is considered a promising experimental realization of QSLs. Among the existing KHA candidates,&#xD;YCu<sub>3</sub>(OH)<sub>6.5</sub>Br<sub>2.5</sub>(YCOB) stands out as the most promising, showing no conventional magnetic ordering down to 50 mK despite a strong antiferromagnetic coupling of ∼ 60 K. This paper reviews key experimental and theoretical studies on YCOB, addressing ongoing challenges and future directions.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/add9dc\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/add9dc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

量子自旋液体(QSLs)最早由p.w. Anderson于1973年通过共振价键态提出,有望成为理解高温超导和推进拓扑量子计算的核心。然而,qsl的确凿实验证据仍然难以捉摸,主要是由于两个因素:首先,大多数二维强受挫自旋模型不是完全可解的,导致不同数值方法的结果不一致;其次,真实的材料通常包含自旋-自旋相互作用的扰动,这会破坏脆弱的量子固体基态。本文对kagome Heisenberg反铁磁体(KHA)进行了综述,KHA被认为是qsl中一个很有前途的实验实现。在现有的KHA候选者中,YCu3(OH)6.5Br2.5(YCOB)是最有希望的,尽管具有强的反铁磁耦合~ 60 K,但在50 mK以下没有传统的磁有序。本文综述了YCOB的主要实验和理论研究,指出了当前面临的挑战和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The kagome Heisenberg antiferromagnet YCu3(OH)6.5Br2.5: A review.

Quantum spin liquids (QSLs), first proposed by P. W. Anderson back in 1973 through the resonating-valence-bond state, are expected to be central to understanding high-temperature superconductivity and advancing topological quantum computation. However, conclusive experimental evidence for QSLs remains elusive, largely due to two factors: first, most two-dimensional strongly frustrated spin models are not exactly solvable, leading to inconsistent results across numerical methods; second, real materials often include spin-spin interaction perturbations that disrupt the fragile QSL ground state. This review focuses on the kagome Heisenberg antiferromagnet (KHA), which is considered a promising experimental realization of QSLs. Among the existing KHA candidates, YCu3(OH)6.5Br2.5(YCOB) stands out as the most promising, showing no conventional magnetic ordering down to 50 mK despite a strong antiferromagnetic coupling of ∼ 60 K. This paper reviews key experimental and theoretical studies on YCOB, addressing ongoing challenges and future directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信