氧空位工程双金属纳米酶用于破坏电子传递链和协同多酶活性以逆转结直肠癌的奥沙利铂耐药。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Dong Zhong, Xiaoxin Yang, Jinhui Yang, Zhisheng Luo, Zhichao Feng, Mengtian Ma, Yunjie Liao, Yongxiang Tang, Yu Wen, Jun Liu, Shuo Hu
{"title":"氧空位工程双金属纳米酶用于破坏电子传递链和协同多酶活性以逆转结直肠癌的奥沙利铂耐药。","authors":"Dong Zhong, Xiaoxin Yang, Jinhui Yang, Zhisheng Luo, Zhichao Feng, Mengtian Ma, Yunjie Liao, Yongxiang Tang, Yu Wen, Jun Liu, Shuo Hu","doi":"10.1186/s12951-025-03417-8","DOIUrl":null,"url":null,"abstract":"<p><p>In colorectal cancer treatment, chemotherapeutic agents induce reactive oxygen species (ROS) production, which promotes NAD<sup>+</sup> accumulation in tumor cells, reducing treatment sensitivity and worsening patient prognosis. Targeted depletion of NAD<sup>+</sup> presents a promising strategy to overcome tumor resistance and improve patient prognosis. Here, we designed a dual-metallic nanozyme (CuMnO<sub>x-V</sub>@Oxa@SP) with defect engineering, modified by soy phospholipids (SP) and loaded with oxaliplatin (Oxa). This nanozyme uses its oxygen-deficient active sites to rapidly and irreversibly degrade NAD⁺ and NADH into nicotinamide and ADP-ribose derivatives, disrupting the electron transport chain (ETC) and compromising tumor antioxidant defenses. It also inhibits the glutathione S-transferase P1 (GSTP1) pathway, weakening tumor detoxification and enhancing chemotherapy sensitivity. Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the CuMnO<sub>x-V</sub> nanozymes with excellent catalytic activity. In the tumor microenvironment (TME), CuMnO<sub>x-V</sub> nanozymes exhibit peroxidase, oxidase, and NAD<sup>+</sup> oxidase-mimicking activities. CuMnO<sub>x-V</sub> generates multiple ROS and depletes NAD<sup>+</sup> while preventing their regeneration thereby triggering a cascade amplification of oxidative stress. This, coupled with targeted chemotherapy drug delivery, restores chemosensitivity in refractory tumors and exposes the vulnerabilities of resistant colorectal cancer cells to ROS.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"352"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy-engineered bimetallic nanozymes for disrupting electron transport chain and synergistic multi-enzyme activity to reverse oxaliplatin resistance in colorectal cancer.\",\"authors\":\"Dong Zhong, Xiaoxin Yang, Jinhui Yang, Zhisheng Luo, Zhichao Feng, Mengtian Ma, Yunjie Liao, Yongxiang Tang, Yu Wen, Jun Liu, Shuo Hu\",\"doi\":\"10.1186/s12951-025-03417-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In colorectal cancer treatment, chemotherapeutic agents induce reactive oxygen species (ROS) production, which promotes NAD<sup>+</sup> accumulation in tumor cells, reducing treatment sensitivity and worsening patient prognosis. Targeted depletion of NAD<sup>+</sup> presents a promising strategy to overcome tumor resistance and improve patient prognosis. Here, we designed a dual-metallic nanozyme (CuMnO<sub>x-V</sub>@Oxa@SP) with defect engineering, modified by soy phospholipids (SP) and loaded with oxaliplatin (Oxa). This nanozyme uses its oxygen-deficient active sites to rapidly and irreversibly degrade NAD⁺ and NADH into nicotinamide and ADP-ribose derivatives, disrupting the electron transport chain (ETC) and compromising tumor antioxidant defenses. It also inhibits the glutathione S-transferase P1 (GSTP1) pathway, weakening tumor detoxification and enhancing chemotherapy sensitivity. Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the CuMnO<sub>x-V</sub> nanozymes with excellent catalytic activity. In the tumor microenvironment (TME), CuMnO<sub>x-V</sub> nanozymes exhibit peroxidase, oxidase, and NAD<sup>+</sup> oxidase-mimicking activities. CuMnO<sub>x-V</sub> generates multiple ROS and depletes NAD<sup>+</sup> while preventing their regeneration thereby triggering a cascade amplification of oxidative stress. This, coupled with targeted chemotherapy drug delivery, restores chemosensitivity in refractory tumors and exposes the vulnerabilities of resistant colorectal cancer cells to ROS.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"352\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03417-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03417-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在结直肠癌治疗中,化疗药物诱导活性氧(ROS)的产生,促进肿瘤细胞中NAD+的积累,降低治疗敏感性,恶化患者预后。靶向消耗NAD+是克服肿瘤耐药和改善患者预后的一种有希望的策略。在这里,我们设计了一种双金属纳米酶(CuMnOx-V@Oxa@SP),通过缺陷工程,由大豆磷脂(SP)修饰,并负载奥沙利铂(Oxa)。这种纳米酶利用其缺氧活性位点快速且不可逆地将NAD +和NADH降解为烟酰胺和adp -核糖衍生物,破坏电子传递链(ETC)并损害肿瘤抗氧化防御。抑制谷胱甘肽s -转移酶P1 (GSTP1)通路,减弱肿瘤解毒作用,提高化疗敏感性。密度泛函理论计算表明,多酶活性中心之间的协同作用使CuMnOx-V纳米酶具有优异的催化活性。在肿瘤微环境(TME)中,CuMnOx-V纳米酶表现出过氧化物酶、氧化酶和模拟NAD+氧化酶的活性。CuMnOx-V产生多种ROS并消耗NAD+,同时阻止其再生,从而引发氧化应激级联扩增。这与靶向化疗药物递送相结合,恢复了难治性肿瘤的化疗敏感性,并暴露了耐药结直肠癌细胞对ROS的脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen vacancy-engineered bimetallic nanozymes for disrupting electron transport chain and synergistic multi-enzyme activity to reverse oxaliplatin resistance in colorectal cancer.

In colorectal cancer treatment, chemotherapeutic agents induce reactive oxygen species (ROS) production, which promotes NAD+ accumulation in tumor cells, reducing treatment sensitivity and worsening patient prognosis. Targeted depletion of NAD+ presents a promising strategy to overcome tumor resistance and improve patient prognosis. Here, we designed a dual-metallic nanozyme (CuMnOx-V@Oxa@SP) with defect engineering, modified by soy phospholipids (SP) and loaded with oxaliplatin (Oxa). This nanozyme uses its oxygen-deficient active sites to rapidly and irreversibly degrade NAD⁺ and NADH into nicotinamide and ADP-ribose derivatives, disrupting the electron transport chain (ETC) and compromising tumor antioxidant defenses. It also inhibits the glutathione S-transferase P1 (GSTP1) pathway, weakening tumor detoxification and enhancing chemotherapy sensitivity. Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the CuMnOx-V nanozymes with excellent catalytic activity. In the tumor microenvironment (TME), CuMnOx-V nanozymes exhibit peroxidase, oxidase, and NAD+ oxidase-mimicking activities. CuMnOx-V generates multiple ROS and depletes NAD+ while preventing their regeneration thereby triggering a cascade amplification of oxidative stress. This, coupled with targeted chemotherapy drug delivery, restores chemosensitivity in refractory tumors and exposes the vulnerabilities of resistant colorectal cancer cells to ROS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信