Xueyu Niu , Jia Deng , Yan Zhao , Yi Zhang , Ziqi Wang , Li Zhang , Kan Wang
{"title":"网络药理学和代谢组学联合研究表明,芦花可通过BCAA降解途径改善运动性大鼠心肌损伤。","authors":"Xueyu Niu , Jia Deng , Yan Zhao , Yi Zhang , Ziqi Wang , Li Zhang , Kan Wang","doi":"10.1016/j.fitote.2025.106617","DOIUrl":null,"url":null,"abstract":"<div><div><em>Rubia cordifolia</em> L. (RCL) is a widely used medicinal with a long history. It exhibits anti-inflammatory and antioxidant properties and prevents apoptosis. While there is growing evidence that exhausted exercise (EE) might cause cardiac damage, RCL has been shown to provide cardioprotective effects. The effects and mechanisms of RCL on exercise-induced myocardial injury remain unclear. In this study, we tested the RCL extract using a rat model of exhausted swimming. We evaluated the therapeutic effect of RCL on exercise-induced myocardial damage using PCR, ELISA, hematoxylin-eosin (H&E) staining, DHE staining, and other methods. UPLC-Q-TOF-MS was employed to identify the components of the RCL extract and its blood-entry components, and network pharmacology was constructed. LC-MS was utilized to investigate left ventricular metabolomics. These two approaches were combined to predict the possible metabolic pathways regulated by RCL. Finally, the targets of the metabolic pathway were verified using molecular docking and western blot analysis. The findings suggest that rubioncolin B, 4-hydroxy-2-carbexyanthraquinone, and 9-Oxo-9H-xanthene-4-carboxylic acid may be the primary active compounds of RCL. RCL promotes the degradation pathway of branched-chain amino acids (BCAA), including valine, leucine, and isoleucine, regulates the proteins BCAT2 and BCKDK, reduces pathological injuries, inflammation, oxidative stress, and collagen deposition, and mitigates the effects of exhaustion-induced myocardial injuries by influencing the key target AKR1C1 and the metabolite L-Valine. This study provides a foundation for the development of RCL as a sports supplement to alleviate EE-induced myocardial injury.</div></div>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":"184 ","pages":"Article 106617"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined network pharmacology and metabolomics reveal that Rubia cordifolia L. ameliorates exhaustive exercise-induced myocardial injury in rats via the BCAA degradation pathway\",\"authors\":\"Xueyu Niu , Jia Deng , Yan Zhao , Yi Zhang , Ziqi Wang , Li Zhang , Kan Wang\",\"doi\":\"10.1016/j.fitote.2025.106617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Rubia cordifolia</em> L. (RCL) is a widely used medicinal with a long history. It exhibits anti-inflammatory and antioxidant properties and prevents apoptosis. While there is growing evidence that exhausted exercise (EE) might cause cardiac damage, RCL has been shown to provide cardioprotective effects. The effects and mechanisms of RCL on exercise-induced myocardial injury remain unclear. In this study, we tested the RCL extract using a rat model of exhausted swimming. We evaluated the therapeutic effect of RCL on exercise-induced myocardial damage using PCR, ELISA, hematoxylin-eosin (H&E) staining, DHE staining, and other methods. UPLC-Q-TOF-MS was employed to identify the components of the RCL extract and its blood-entry components, and network pharmacology was constructed. LC-MS was utilized to investigate left ventricular metabolomics. These two approaches were combined to predict the possible metabolic pathways regulated by RCL. Finally, the targets of the metabolic pathway were verified using molecular docking and western blot analysis. The findings suggest that rubioncolin B, 4-hydroxy-2-carbexyanthraquinone, and 9-Oxo-9H-xanthene-4-carboxylic acid may be the primary active compounds of RCL. RCL promotes the degradation pathway of branched-chain amino acids (BCAA), including valine, leucine, and isoleucine, regulates the proteins BCAT2 and BCKDK, reduces pathological injuries, inflammation, oxidative stress, and collagen deposition, and mitigates the effects of exhaustion-induced myocardial injuries by influencing the key target AKR1C1 and the metabolite L-Valine. This study provides a foundation for the development of RCL as a sports supplement to alleviate EE-induced myocardial injury.</div></div>\",\"PeriodicalId\":12147,\"journal\":{\"name\":\"Fitoterapia\",\"volume\":\"184 \",\"pages\":\"Article 106617\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fitoterapia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0367326X25002424\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367326X25002424","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Combined network pharmacology and metabolomics reveal that Rubia cordifolia L. ameliorates exhaustive exercise-induced myocardial injury in rats via the BCAA degradation pathway
Rubia cordifolia L. (RCL) is a widely used medicinal with a long history. It exhibits anti-inflammatory and antioxidant properties and prevents apoptosis. While there is growing evidence that exhausted exercise (EE) might cause cardiac damage, RCL has been shown to provide cardioprotective effects. The effects and mechanisms of RCL on exercise-induced myocardial injury remain unclear. In this study, we tested the RCL extract using a rat model of exhausted swimming. We evaluated the therapeutic effect of RCL on exercise-induced myocardial damage using PCR, ELISA, hematoxylin-eosin (H&E) staining, DHE staining, and other methods. UPLC-Q-TOF-MS was employed to identify the components of the RCL extract and its blood-entry components, and network pharmacology was constructed. LC-MS was utilized to investigate left ventricular metabolomics. These two approaches were combined to predict the possible metabolic pathways regulated by RCL. Finally, the targets of the metabolic pathway were verified using molecular docking and western blot analysis. The findings suggest that rubioncolin B, 4-hydroxy-2-carbexyanthraquinone, and 9-Oxo-9H-xanthene-4-carboxylic acid may be the primary active compounds of RCL. RCL promotes the degradation pathway of branched-chain amino acids (BCAA), including valine, leucine, and isoleucine, regulates the proteins BCAT2 and BCKDK, reduces pathological injuries, inflammation, oxidative stress, and collagen deposition, and mitigates the effects of exhaustion-induced myocardial injuries by influencing the key target AKR1C1 and the metabolite L-Valine. This study provides a foundation for the development of RCL as a sports supplement to alleviate EE-induced myocardial injury.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.